INTRODUCTION Aickinstrut Fiberglass Strut is the most widely used and accepted nonmetallic strut support system in the world because it is the most complete quality line of nonmetallic accessories, fasteners, hangers, pipe clamps and channels available. Aickinstrut is a versatile, high-strength product that has been successfully used in thousands of applications worldwide. Some of those applications include: wastewater treatment, refineries, chemical plants, marinas, pulp and paper, desalination facilities, theme parks, aquariums and underground vaults. Made from entirely nonmetallic, corrosion resistant resins, Aickinstrut can be used in demanding environments where steel strut systems have traditionally failed. Its lightweight components can be installed quickly and easily using standard metal working tools. All Aickinstrut parts incorporate the highest quality materials to provide superior chemical resistance, strength, flame resistance and ultraviolet protection. Because Aickinstrut manufactures a complete corrosion resistant strut support system, the customer has the benefit of purchasing all of these items from a single source, thereby minimizing start up and delivery delays. Aickinstrut stands ready to provide assistance through its network of distributors and sales representatives. # **Table of Contents** | AIURINGTHUT STSTEM | | |---|----------| | ntroduction | 2 | | Technical Information | | | Fabrication | 4 | | | | | Materials | | | Temperature Ranges | | | Typical Properties | | | Aickinstrut Specifications | | | Chemical Resistance | 8-9 | | Channel Framing | | | Channel Framing | | | Concrete Embedment Channel | 10 | | SST Channel | 10 | | Channel Profiles | 11 | | Channel Loading | 12-15 | | Channel Framing Accessories | | | Channel Fittings | 16-18 | | Post Bases | 19 | | Channel Spacers | 19 | | Channel Capping Strip | 19 | | Channel End Cap | | | Pipe Clamps Aickinclamps Adjustable Pipe Clamps Rigid Pipe Clamps Two-Hole Pipe Straps Channel Caps & Spacers | 21
21 | | J-Bolts | | | Fasteners | | | Fiberfast Bolts | 23 | | Vinyl Ester Square Head Bolts | | | Fiberfast Hex Nuts | | | Vinvl Ester Square Nuts | | | Flat Washers | | | Channel Nuts | | | Saddle Clips | | | Stop-Lock Assemblies | | | Stop-Eock Assemblies | 20 | | Pipe Hangers Clevis Hangers | 26 | | Sievis natigets | 20 | | Pipe Hanging Accessories | 0.7 | | Beam Clamps | | | Beam Clamp Clips | | | Threaded Rod | | | Duraclamp C-Clamps | | | Channel Hanger | 28 | | Pipe Supports | | | Power-Racks Stanchions | | | Mall Proplet | 20 | | AICKINSTRUT SYSTEM (CONT.) | | |---|-------| | Instrument & Pipe Stands Heavy Duty Post Base | | | Instrument & Pipe Stands | 30 | | AICKINSHAPE | | | Introduction | 31 | | Structural Shapes Structural Shapes | 31-33 | #### **Technical Information** #### **AICKINSTRUT FABRICATION** The installation of fiberglass channel and accessories is similar to the installation of metallic channel and accessories. All standard installation practices and procedures apply. In general, special handling is not required. Fabrication of Aickinstrut components requires just three simple operations; cutting, drilling and sealing as described below. **Cutting** – Cutting can be accomplished with a wide variety of saws. Hand held saws, such as hack saws (24 to 32 teeth per inch) are suitable when a few number of cuts are required. For frequent cutting, a circular power saw with a carbide-tipped masonry blade yields the best results and the greatest number of cuts. When using a power saw, dust filter masks, gloves and long sleeve clothing should be worn. **Drilling** – Any standard twist bit, even when used with battery-powered drills will work well. Carbide-tipped drill bits are recommended. #### LABOR SAVINGS Aickinstrut fiberglass structural members can be cut and drilled at a much faster rate than steel. Typically, fiberglass can be fabricated in less than half the time. As a result, substantial labor savings will be realized. Also, Aickinstrut products average ½ the weight of their steel counterparts, making them much easier to handle on the job site. #### **RELATIVE MATERIAL COSTS** Aickinstrut materials are advantageously priced relative to specialty metals traditionally used in corrosive environments. Aickinstrut, even though slightly more expensive than pre-galvanized channel, can be used with the knowledge that it will not have to be maintained regularly or replaced after a brief time. Should pre-galvanized channel have to be replaced once, its cost far outweighs the expense of doing the initial installation with Aickinstrut. #### **MATERIAL** The finished Aickinstrut application will utilize a combination of materials from the following resin families: | Material Code | Material | |---------------|----------------------------------| | E | PVC (extruded) | | Р | Polyester (pultruded) | | V | Vinyl ester (pultruded) | | PU | Polyurethane (injection molded) | | PP | Polypropylene (injection molded) | | N | Nylon (injection molded) | The ability of each material to handle high and low temperatures, chemical exposures and static loads is covered in each of the following sections. By using these criteria, you will be able to select the optimal Aickinstrut Channel, Fittings and Accessories for your particular applications. #### **OPERATING ENVIRONMENT** In order to design an Aickinstrut system for your application, consideration should be given to the maximum operating conditions. These "worst case" conditions will determine which type of Aickinstrut materials are best suited for your application. The three "worst case" operating conditions to consider are: - Temperature - Chemical Environment - Loading Temperature Ranges – Aickinstrut is supplied in six different materials covering distinct temperature ranges. Materials should be chosen which meet or exceed the minimum and maximum temperatures for your applications. | Material | Low | High | |----------|-------------|-------------| | Code | Temperature | Temperature | | Е | -25°F | 130°F | | Р | -35°F | 200°F | | V | -35°F | 200°F | | PU | -40°F | 140°F | | PP | -30°F | 150°F | | N | -20°F | 150°F | The temperature ranges indicated are meant to be used only as a general guideline. Continual exposure to elevated temperatures reduces the strength properties of plastics and glass reinforced fiberglass. Actual resin test data confirms that a 50% reduction in strength occurs at the extreme high temperature levels. Chemical Resistance – Each resin family has its own specifications regarding its performance against corrosion resistance. Use the following chart to determine which Aickinstrut material system will provide the best performance for your particular application. The results in the chart are based upon immersion for a 24 hour period. This is typically the "worst case" exposure to corrosion. Less severe contact such as spills, splashes and vapor condensate will exceed the performance results listed in the table. Loading – Channel loading is defined on pages 13 to 15. Additional loading and design limitations for fittings and accessories are described in the appropriate section for that part. #### THE PULTRUSION PROCESS The pultruded structural component is made by reinforcing a polymer resin (usually polyester or vinyl ester resin) with multiple strands of glass filament and alternating layers of glass mat. The glass is drawn through the liquid resin, which coats and saturates the fibers. The combination of resin and glass is then continuously guided and pulled (pultruded) through a heated die that determines the shape of the component. In the die, the resin is cured to form a permanent, reinforced part which can be cut to a specific length. Since the hardened fiberglass pultrusion is reinforced with an internal arrangement of permanently bonded continuous glass fibers, it possesses great strength. In addition to strength, pultruded fiberglass components exhibit exceptional corrosion resistance. This attribute makes fiberglass the material of choice for many harsh industrial applications. #### **RESIN SYSTEMS** Polyester and vinyl ester resin systems are available. The vinyl ester resin system is somewhat stronger and is applied in severe corrosive applications. Both resin systems are flame retardant, conforming to ASTM E84, Class 1 flame rating and are self extinguishing per the requirements of UL94V-0. Consult the corrosion resistance guide on page 8 and 9 to determine the correct resin system for your application. AICKINSTRUT RESERVES THE RIGHT TO MAKE SPECIFICATION CHANGES WITHOUT NOTICE. WHILE EVERY EFFORT HAS BEEN MADE TO ASSURE THE ACCURACY OF INFORMATION CONTAINED IN THIS CATALOG AT THE TIME OF PUBLICATION, WE CANNOT ACCEPT RESPONSIBILITY FOR INACCURACIES RESULTING FROM UNDETECTED ERRORS OR OMISSIONS. | | | | | Typical Value | Typical Value | |-------------------------------------|-------------|-----------------|------------|-----------------------|-----------------------| | Typical Properties | Test Method | Direction | Unit | Polyester | Vinyl Ester | | Mechanical | | | | | | | Ultimate Tensile Strength | ASTM D-638 | Longitudinal | PSI | 30,000 | 35,000 | | | ASTM D-638 | Transverse | PSI | 7,000 | 10,000 | | Tensile Modulus | ASTM D-638 | Longitudinal | PSI | 2.5 x 10 ⁶ | 3.0×10^6 | | | ASTM D-638 | Transverse | PSI | 0.8 x10 ⁶ | 1.0×10^6 | | Ultimate Compressive Strength | ASTM D-695 | Longitudinal | PSI | 30,000 | 35,000 | | | ASTM D-695 | Transverse | PSI | 15,000 | 20,000 | | Compressive Modulus | ASTM D-695 | Longitudinal | PSI | 2.5 x 10 ⁶ | 2.5 x 10 ⁶ | | | ASTM D-695 | Transverse | PSI | 1.0 x 10 ⁶ | 1.2×10^6 | | Ultimate Flexural Strength | ASTM D-790 | Longitudinal | PSI | 30,000 | 35,000 | | | ASTM D-790 | Transverse | PSI | 10,000 | 14,000 | | Flexural
Modulus | ASTM D-790 | Longitudinal | PSI | 1.6 x 10 ⁶ | 2.0 x 10 ⁶ | | | ASTM D-790 | Transverse | PSI | 0.8×10^6 | 1.0×10^{6} | | Shear Strength Short Beam | ASTM D-2344 | Longitudinal or | PSI | 5,500 | 7,000 | | | | Transverse | PSI | 5,500 | 6,000 | | Impact Strength-Izod | ASTM D-256 | Longitudinal | ftlb./in. | 25 | 30 | | | | Transverse | ftlb./in. | 4 | 5 | | Hardness-Barcol | ASTM D-2583 | Perpendicular | _ | 50 | 50 | | Electrical | | | | | | | Electric Strength Short Time-in oil | ASTM D-149 | Perpendicular | Volts/mil. | 200 | 200 | | | | Parallel | KV/in. | 35 | 35 | | Dielectric Constant | ASTM D-150 | Perpendicular | _ | 5.0 | 5.0 | | Dissipation Factor | ASTM D-150 | Perpendicular | _ | 0.03 | 0.03 | | Arc Resistance | ASTM D-495 | Longitudinal or | Seconds | 80 | 120 | | | | Transverse | Seconds | 80 | 120 | # **Technical Information** #### Glass Roving and Mat Reinforced Polyester and Vinyl Ester Fiberglass Components | | | | | Typical Value | Typical Value | |----------------------------------|--------------------|--------------|-----------------|----------------------|----------------------| | Typical Properties | Test Method | Direction | Unit | Polyester | Vinyl Ester | | Other | | | | | | | Thermal Coefficient of Expansion | ASTM D-696 | Longitudinal | in./in./°F | 5 x 10 ⁻⁶ | 5 x 10 ⁻⁶ | | Thermal Conductivity | | Longitudinal | BTU/Hr. sq. | 4.0 | 4.0 | | | | | ft./in./°F | | | | Water Absorption 24 hours | ASTM 0-570 | Longitudinal | % | 1 | 1 | | Density | ASTM D-792 | Longitudinal | lbs./cu.in. | 0.062 | 0.062 | | Color (Standard) | | | | Dark Gray | Beige | | Flammability | UL94 | | Classification: | V-0 | V-0 | | Flammability | ASTME84 | | Rating: | 25 | 25 | The foregoing list of properties was derived from laboratory data using coupon test specimens cut from pultruded sections. Such information should only be used as a general guide in design. Many actual components (such as cable tray side rail) take advantage of the flexibility of the pultrusion process and are selectively reinforced to enhance performance in a particular load axis. The factory should be contacted for specific information on any given component. #### **Aickinstrut Fiberglass Threaded Rod Material Properties** Threaded rod is a proprietary combination of fiberglass and Class I vinyl ester flame retardant resin. | Properties | ³ /8 -16 UNC | ¹ /2-13 UNC | 5/8-11 UNC | |---|--------------------------------|------------------------|-----------------------| | Thread shear strength using fiberglass nut in tensile (lbs.) | 1,250 | 2,500 | 3,800 | | Transverse shear on threaded rod-double shear ASTM-B-565 (load lb.) | 4,200 | 7,400 | 11,600 | | Transverse shear on threaded rodsingle shear (load lb.) | 1,600 | 2,600 | 3,800 | | Compressive strength-longitudinal ASTM-D-695 (psi) | 55,000 | 55,000 | 55,000 | | Flexural strength ASTM-D-790 (psi) | 60,000 | 60,000 | 60,000 | | Flexural modulus ASTM-D-790 (psi x 10') | 2.0 x 10 ⁶ | 2.0×10^6 | 2.0 x 10 ⁶ | | Torque strength using fiberglass nut lubricated with SAE IOW30 motor oil (ft./lbs.) | 8 | 15 | 33 | | Dielectric strength ASTM-D-149 (kv/in.) | 40 | 40 | 40 | | Water absorption 24 hour immersionthreaded ASTM-D-570 (%) | 1 | 1 | 1 | | Coefficient of thermal expansionlongitudinal (in./in./°F) | 5 x 10 ⁶ | 5 x 10 ⁶ | 5×10^6 | | Max recommended operation temp, based on 50% retention of ultimate | | | | | thread shear strength (°F) | 200 | 200 | 200 | | Stud weight (lb./ft.) | .076 | .129 | .209 | | Flammability | Self extinguishing | per UL94V-0 | | #### **Aickinstrut Specifications** #### 1.0 SCOPE 1.1 This specification covers the requirements for the Aickinstrut Nonmetallic Channel Framing System. #### 2.0 MATERIAL - 2.1 FRP channel shall be of pultruded glass reinforced polyester or vinyl ester resin having the physical property values listed in this catalog. - 2.2 PVC channel shall be of extruded polyvinyl chloride having the physical property values listed in this catalog. - 2.3 Some accessories shall be of injection molded, 40% long glass fiber reinforced polyurethane, polypropylene or nylon. #### 3.0 COMPOSITION - 3.1 Glass reinforced channel shall have a synthetic surfacing veil applied on exterior surfaces to improve weatherability and inhibit ultraviolet degradation. - 3.2 PVC channel shall be manufactured from a U.V. stabilized resin and incorporate dark gray pigment to improve weatherability and inhibit ultraviolet degradation. #### 4.0 STRUCTURAL DESIGN - 4.1 Channel shall incorporate Aickinstrut's patented flange profile design which allows full and positive interlocking contact of channel accessories and prohibits premature flange failure from torqued accessories. - 4.2 Channel profile dimensions shall be: 4.3 All 1%" x 1%" channel profiles shall have a minimum pull out resistance of 1,000 pounds when load is applied over a 3%" long section of the inside flanges. - 4.4 Channel section lengths shall be supplied in 10' or 20' lengths $(\pm \frac{1}{8}")$. - 4.5 Universal Pipe Clamps shall have full interlocking contact with interior channel flanges to maximize pull-out resistance and be adjustable to accommodate a minimum ³/₄" variance in piping or conduit O.D. sizes. #### 5.0 STANDARDS - 5.1 Glass reinforced and PVC channels covered in this specification shall have a flame spread rating of 25 or less when tested per ASTM E84 and meet the requirements of UL 94V0 thereby qualifying them as Class 1 material in the Uniform Building Code. - 5.2 Glass reinforced channels covered in this specification shall comply with the requirements of ASTM D 3917 and ASTM D 4385 which govern the dimensional tolerance and visual defects of pultruded shapes. #### 6.0 GENERAL - 6.1 Aickinstrut Nonmetallic Channel Framing shall be furnished as a system which includes all the necessary fasteners, channel splice plates, brackets, sealants, hangers, pipe clamps, etc. - 6.2 Nonmetallic fasteners shall be manufactured from long glass fiber reinforced polyurethane to ensure maximum strength and corrosion resistance. - 6.3 All components of the Aickinstrut Channel Framing System shall be nonmetallic except where type 316 stainless steel hardware is used as part of the assembly. - 6.4 Aickinstrut is manufactured by Aickinstrut, a subsidiary of T. J. Cope, Philadelphia, Pennsylvania, 1-800-426-4293. - 6.5 The manufacturer shall not have had less than 10 years experience in manufacturing strut systems. - 6.6 Most products are manufactured in the United States of America. Some items are outsourced where deemed necessary. # **Technical Information** ## **Chemical Compatibility Table** | Chomical Companionty Table | | | | | | | | | | | | | |---|--|---------|----------|-----------|---------|-----------|--------|---------------------|----------------|---|----------------------------------|---------| | Chemical | Series E Series P Series V
(Rigid PVC) (Poly/Glass) (Vinyl/Glas
70°-160°F 70°-160°F 70°-160° | | | | | | | es K
DF)
60°F | (Polyurethane) | | Series N
(Nylon)
70°-160°l | | | Acetic Acid, Up to 10% | R | R | R | R | R | R | R | R | R | _ | NR | NR | | Acetic Acid, Up to 50% | R | R | R | R | R | R | R | R | R | _ | NR | NR | | Acetone, Up to 10% | NR R | _ | R | R | | Aluminum Hydroxide | R | R | R | R | R | R | R | R | R | _ | NR | NR | | Ammonium Hydroxide (Aqueous Ammonia), Up to 5% | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Ammonium Hydroxide, Up to 10% | R | R | NR | NR | R | 150° | R | R | R | _ | _ | _ | | Ammonium Hydroxide, Up to 20% | R | R | NR | NR | | 150° | R | R | R | _ | | _ | | Ammonium Nitrate | R | NR | R | R | R | R | R | R | R | _ | _ | _ | | Ammonium Phosphate | R | R | R | NR | R | R | R | R | R | _ | _ | _ | | Ammenium Sulfide, saturated | R | R | NR | NR | R | 120° | R | R | R | _ | | _ | | Aqua Regia, fumes | NR | NR | NR | NR | R | 150° | R | R | NR | _ | _ | _ | | Benzene NR | R | R | R | R | R | | | Benzoic Acid | R | R | R | R | R | R | R | R | R | | | | | Bromine, wet gas | R | NR | NR | NR | R | 100° | R | R | _ | _ | _ | _ | | Butylene Glycol, Up to 100% | R | R | R | R | R | R | R | R | R | _ | R | R | | Butyric Acid, Up to 50% | NR | NR | R | R | R | R | R | R | R | _ | | | | Calcium Hydroxide | R | R | R | NR | R | R | R | R | R | _ | _ | _ | | Calcium Hypochlorite | R | R | R | NR | R | R | R | R | R | _ | NR | NR | | Chlorine, Dry Gas | NR | NR | NR | NR | R | R | R | R | - 11 | | IVII | IVII | | Chlorine, Wet Gas | NR | NR | NR | NR | n
R | n
R | n
R | n
R | _ | _ | _ | _ | | Chlorine, Liquid | NR | NR | NR | NR | n
NR | n
NR | n
R | n
R | _ | _ | _ | _ | | Chlorine, Water | NR | NR | R | R | | R | R | R | R | | NR | NR | | Chromic Acid, Up to 5% | NK
R | NK
R | n
NR | n
NR | R
R | r
R | R
R | r
R | n | _ | INK
R | NK
R | | Copper Chloride | R | R | R | R | R | R | R | R | R | _ | - | n
_ | | | | | | | | | | | | | | | | Copper Cyanide
Copper Fluoride | R
R | R
R | R
R | NR
NR | R
R | R
R | R
R | R
R | n
R | _ | _ | _ | | Copper Nitrate | n
R | n
R | n
R | in
R | n
R | n
R | n
R | n
R | n
R | _ | _ | _ | | | | | | | | | | | | | | | | Copper Sulfate Dechlorinated Brine Storage | R
R | R
R | R | R | R | R
R | R | R
R | R
R | _ | _ | _ | | Esters, Fatty Acid | n
NR | n
NR | –
R | –
R | R
R | n
R | R
R | n
R | n
R | _ | _ | _ | | | | | | | | | | | | | | _ | | Ferric Chloride
Ferrous Chloride | R | R
R | R | R
R | R | R
R | R | R | R
R | _ | _ | _ | | Fluoboric Acid | R
R | n
R | R
R | n
120° | R
R | n
R | R
R | R
R | n | _ | _ | _ | | | | | | | | |
 | | | ND. | ND. | | Fluosilicic Acid, Up to 10% | NR
NR | NR | NR
NR | NR
NR | R | R
100° | R | R | _ | _ | NR | NR | | Fluosilicic Acid, Up to 32%
Formic Acid, Up to 10% | ININ
R | NR
R | NR | NR | R
R | R | R
R | R
R | –
R | _ | -
NR | –
NR | | | | | | | | | | | | _ | IVII | INIT | | Formic Acid, Up to 50% | R | R | NR | NR | R | 100° | R | R | R | - | _ | - | | Gasoline, Aviation
Green Liquor, Pulp Mill | R | NR
P | R | NR
- | R | R
R | R | R | R | _ | _ | _ | | | R | R | | | R | | R | R | | | | _ | | Hydrochloric Acid Up to 15% | R | R | R | NR | R | R | R | R | R | _ | - | - | | Hydrochloric Acid Up to 37% | R | R | R | NR | R | R
150° | R | R | R | _ | _ | _ | | Hydrofluoric Acid, Up to 10% | R | R | NR | NR | R | 150° | R | R | | _ | | _ | | Hydrofluoric Acid, Up to 20% | R | NR | NR | NR | | 100° | R | R | - | _ | - | - | | Hydrogen Chloride, Wet Gas | NR | NR | R | NR | R | R | R | R | NR | - | - | - | | Hydrogen Sulfide, Wet Gas | R | R | R | NR | R | R | R | R | R | _ | _ | _ | Legend: "NR" indicates "Not Recommended" for use; $^{{\}bf ``R"}\ indicates ``Recommended";$ [&]quot;-" indicates no information available | Selled Part | Chemical Compatibility Table | | | | | | | | | | | | | |---|---|--------|--------|--------|--------------|----|---------------|----|-----|----------------|---|-------|-----| | Lead Nitrate R <t< th=""><th>Chemical</th><th>(Rigio</th><th>I PVC)</th><th>(Poly/</th><th colspan="2">(Poly/Glass)</th><th colspan="2">(Vinyl/Glass)</th><th>DF)</th><th colspan="2">(Polyurethane)</th><th>(Nylo</th><th>on)</th></t<> | Chemical | (Rigio | I PVC) | (Poly/ | (Poly/Glass) | | (Vinyl/Glass) | | DF) | (Polyurethane) | | (Nylo | on) | | Magnesium Hydroxide R R NR NR | Lactic Acid | R | R | R | NR | R | R | R | R | R | _ | _ | _ | | Nickel Sulfate, Llow pH | Lead Nitrate | R | R | _ | _ | R | R | R | R | R | _ | - | _ | | Nickel Sulfate, High pH | Magnesium Hydroxide | R | R | NR | NR | R | R | R | R | R | - | R | R | | Nitric Acid, Up to 5% R R R R R R R R R R R R R R R R R R | Nickel Sulfate, Low pH | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Nitric Acid, Up to 35% | Nickel Sulfate, High pH | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Nitric Acid, Vapor R R R NR NR NR R R R R R R R R R R R | Nitric Acid, Up to 5% | R | R | NR | NR | R | 150° | R | R | R | - | - | - | | Perchloric Acid, Up to 10% NR NR NR NR NR NR R 150° R R R NR R R R | Nitric Acid, Up to 35% | R | R | NR | NR | R | 150° | R | R | R | _ | _ | _ | | Pickling Liquids, 3-5% H2S04 R | Nitric Acid, Vapor | R | R | NR | NR | R | R | R | R | _ | _ | _ | _ | | Phosphoric Acid R R R NR NR NR R R R R R R R R R R R | Perchloric Acid, Up to 10% | NR | NR | NR | NR | R | 150° | R | R | _ | _ | NR | NR | | Phosphoric Acid R | Pickling Liquids, 3-5% H2S04 | R | R | R | R | R | R | R | R | R | _ | _ | _ | | Phosphoric Acid Vapor or Condensate R R NR NR | • • | R | R | NR | NR | R | R | R | R | R | _ | NR | NR | | Potassium Chloride | Phosphoric Acid, Super or Poly (115%, P20%) | R | R | NR | NR | R | R | R | R | _ | _ | _ | _ | | Potassium Nitrate | Phosphoric Acid Vapor or Condensate | R | R | NR | NR | R | R | R | R | _ | _ | _ | _ | | Potassium Persulfate R R NR NR | Potassium Chloride | R | R | R | R | R | R | R | R | R | _ | _ | _ | | Silver Cyanide, Up to 5% R <td>Potassium Nitrate</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>_</td> <td>-</td> <td>_</td> | Potassium Nitrate | R | R | R | R | R | R | R | R | R | _ | - | _ | | Sodium Hydroxide, Up to 25% R R R R NR NR R 150° R R R - < | Potassium Persulfate | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Sodium Hydroxide, up to 50% | Silver Cyanide, Up to 5% | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Sodium Hypochlorite, Up to 15% R <th< td=""><td>Sodium Hydroxide, Up to 25%</td><td>R</td><td>R</td><td>NR</td><td>NR</td><td>R</td><td>150°</td><td>R</td><td>R</td><td>R</td><td>_</td><td>-</td><td>_</td></th<> | Sodium Hydroxide, Up to 25% | R | R | NR | NR | R | 150° | R | R | R | _ | - | _ | | Sodium Nitrate R | Sodium Hydroxide, up to 50% | R | R | NR | NR | R | 180° | R | R | _ | _ | R | R | | Sodium Sulfate R | Sodium Hypochlorite, Up to 15% | R | R | NR | NR | R | 150° | R | R | R | _ | NR | NR | | Sodium Sulfide R | Sodium Nitrate | R | R | R | R | R | R | R | R | R | _ | - | _ | | Sulfuric Acid, Up to 25% R <td>Sodium Sulfate</td> <td>R</td> <td>R</td> <td>R</td> <td>NR</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>_</td> <td>_</td> <td>_</td> | Sodium Sulfate | R | R | R | NR | R | R | R | R | R | _ | _ | _ | | Sulfuric Acid, Up to 50% R R NR NR </td <td>Sodium Sulfide</td> <td>R</td> <td>R</td> <td>NR</td> <td>NR</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>_</td> <td>_</td> <td>_</td> | Sodium Sulfide | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Sulfuric Acid, Up to 70% R
R <td>Sulfuric Acid, Up to 25%</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>R</td> <td>_</td> <td>NR</td> <td>NR</td> | Sulfuric Acid, Up to 25% | R | R | R | R | R | R | R | R | R | _ | NR | NR | | Sulfuric Acid, Up to 75% NR NR NR NR NR NR R 120° R R - - NR NR NR Sulfuric Acid, Up to 80% NR NR< | Sulfuric Acid, Up to 50% | R | R | NR | NR | R | R | R | R | R | _ | _ | _ | | Sulfuric Acid, Up to 80% NR N | Sulfuric Acid, Up to 70% | R | R | NR | NR | R | R | R | R | R | _ | NR | NR | | Sulfuric Acid, Vapor R | Sulfuric Acid, Up to 75% | NR | NR | NR | NR | R | 120° | R | R | _ | _ | NR | NR | | Sulfuric Acid, Vapor R | | NR _ | _ | NR | NR | | Trichlorethylene, Fumes NR NR NR NR R< | , · | | | | | | | | | _ | _ | | | | Trisodium Phosphate R | , · | NR | NR | NR | NR | R | 120° | R | R | NR | _ | _ | _ | | Urea R | Trisodium Phosphate | R | R | R | NR | R | R | R | R | R | _ | _ | _ | | Vegetable Oils R | • | | | | | | | | | | _ | R | R | | Vinegar R R R R R R R R R R | Vegetable Oils | | | | | R | | | | | _ | | | | | | R | R | R | R | R | R | R | R | R | R | R | | | White Liquor, Pulp Mill RR RR RR | White Liguor, Pulp Mill | R | R | _ | _ | R | R | R | R | _ | _ | | _ | #### **BEAM LOADING CONVERSION TABLE** **Note**: The recommendations contained in this table are made without guarantee of representation as to results. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by T.J. Cope, Inc. as to effects of such use or results to be obtained nor does T.J. Cope, Inc. assume any liability arising out of the use by others of the products referenced in this table. Nor is the information herein to be construed as absolutely complete since additional information may be needed or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations. We suggest that you evaluate these recommendations and suggestions in your own laboratory prior to use. Our responsibility for claims arising from breach of warranty, negligence, or otherwise is limited to the purchase price of the material. Legend: "NR" indicates "Not Recommended" for use; "R" indicates "Recommended"; "-" indicates no information available #### CHANNEL FRAMING All Aickinstrut channels, except the SST series, incorporate a flange design which provides reliable fastening and interlocking of Aickinstrut components and accessories. Channels are provided in standard lengths of 10' with longer lengths available upon request. Aickinstrut single channels come packaged in boxes of 100' while the double channels are packaged in boxes containing 40'. Aickinstrut channel is available in three materials: - Polyester (P material), Gray - Vinyl Ester (V material) and Beige - PVC (E material) Dark Gray #### **Polyester and Vinyl Ester Materials** The polyester and vinyl ester channels are manufactured from the pultrusion process. In this process, the component is made by reinforcing a polymer resin (polyester or vinyl ester) with multiple strands of glass filament, alternating layers of glass mat and U.V. resistant surfacing veils. The glass is drawn through the liquid resin, which coats and saturates the fibers. The combination of resin, glass and veil is then continuously guided and pulled (pultruded) through a heated die that determines the shape of the component. In the die, the resin is cured to form a permanent, reinforced part which can be cut to a specific length. Since the hardened fiberglass pultrusion is reinforced with and internal arrangement of permanently bonded continuous glass fibers, it possesses great strength. In addition, pultruded fiberglass components exhibit exceptional corrosion and fire resistance. These attributes make fiberglass the material of choice for many harsh industrial applications. The polyester and vinyl ester channels are color coded. Polyester channels are colored gray and the vinyl ester channels are colored beige. #### **PVC Materials** The PVC channels are manufactured from the extrusion process. In this process, the component is made by a PVC resin mixture being continuously fed through a heated die that determines the shape of the component. In the die, the resin is cured to form a permanent, extruded part that can be cut to a specific length. Unlike pultruded components, extruded components do not incorporate glass-reinforcement; consequently, they do not exhibit the same beam strength as their pultruded counterparts. PVC components, however; exhibit exceptional corrosion and fire resistance. These features make PVC channels an excellent alternative when excessive beam strength is not required. PVC channels are color coded dark gray. #### **CHANNEL AVAILABILITY CHART** The following chart illustrates the availability of materials in the different channel profiles. | Channel Profile | Polyester (P)
Vinyl Ester (V) | PVC (E) | |-----------------------------|----------------------------------|---------| | Series 1000, 1000SST, 1200 | | | | 1200SST,2000,2200,2300 | Х | Χ | | Series 1100,1100SST,1300, | | | | 1300SST,1500,1600,1700,1800 | XX | N/A | #### CONCRETE EMBEDMENT CHANNEL In certain applications, it is necessary to embed a corrosion resistant channel into a new pouring of concrete. For these applications, Aickinstrut concrete embedment channel is recommended. Aickinstrut embedment channel is available in three material types; PVC, polyester and vinyl ester. The PVC embedment channel is extruded as one piece while the polyester and vinyl ester embedment channel is a two piece bonded type design. The PVC embedment channel is available in the $1\frac{5}{8}$ " profile while polyester and vinyl ester embedment channels are available in all three profiles $(1\frac{5}{8}$ ", $1\frac{1}{2}$ " & $1\frac{1}{8}$ "). The embedment channel utilizes two continuous protruding flanges in the profile base to retain the channel in the concrete. Mounting the embedment channel flush with the concrete surface is a convenient way to secure piping, conduits or electrical enclosures to a wall or ceiling. The PVC embedment channel is extremely high in strength. When embedded in 3,000 PSI concrete, the concrete will fail before the channel is pulled out. When field cuts are made, product must be sealed using acrylic enamel. #### **AICKINSTRUT SST CHANNEL** Aickinstrut SST Fiberglass Channel incorporates a standard channel profile that will accommodate metallic pipe straps and clamps. SST channel is available in polyester or vinyl ester resin. All standard styles (solid, slotted, concrete insert and back-to-back) are also available. Please contact the factory for loading information for the SST Channel. **NOTE:** Aickinstrut SST Channel is not compatible with the Aickinstrut pipe clamps, channel nuts, and grooved fittings shown in this catalog. This profile is designed for use with metallic pipe straps and pipe clamps which are also available from Atkore. #### **HEAVY DUTY CHANNEL - AICKINSTRUT PROFILE** # **Standard** 20P-2000. 20V-2000. 20E-2000 Slotted (1" x 3/8" Holes) 20P-2200, 20V-2200, 20E-2200 With Concrete Inserts 20P-2300, 20V-2300, 20E-2300 Back-to-Back 20P-2100, 20V-2100 #### **MEDIUM DUTY CHANNEL - AICKINSTRUT PROFILE** **Standard** 20P-1500, 20V-1500 Slotted (1" x 3/8" Holes) 20P-1700, 20V-1700 With Concrete Inserts 20P-1800, 20V-1800 **Back-to-Back** 20P-1600, 20V-1600 #### LIGHT DUTY CHANNEL - AICKINSTRUT PROFILE **Standard** 20P-1000, 20V-1000, 20E-1000 **Slotted (1" x 3/8" Holes)** 20P-1200, 20V-1200, 20E-1200 With Concrete Inserts 20P-1300, 20V-1300 Back-to-Back 20P-1100, 20V-1100 **HEAVY DUTY CHANNEL - STANDARD PROFILE** **Standard** 20P-2000-SST, 20V-2000-SST **Slotted (1" x 3/8" Holes)** 20P-2200-SST, 20V-2200-SST With Concrete Inserts 20P-2300-SST, 20V-2300-SST Back-to-Back 20P-2100-SST, 20V-2100-SST Standard lengths of 10ft. To order 20ft lengths, add -20 to the end of the part number #### **CHANNEL LOADING** Channel loading generally occurs in one of the following modes: - beam - column - flange #### **BEAM LOADING** Beam loading data reflects the maximum uniform load allowed when using the channel horizontally as in a trapeze hanger. Refer to the table on Page 13 for simple beam loading capacity of various channels. Use the beam loading conversion chart on page 12 to calculate loading capacity for other beam loading conditions. The Aickinstrut Trapeze hanger is an example of beam loading. To calculate the maximum allowable beam load for an Aickinstrut Trapeze hanger: - 1. Measure the distance
between the two threaded rod supports. - 2. Using the length of the section hanger as the "beam", refer to the appropriate profile size in the Beam Loading Chart to determine whether the deflection meets your requirements. #### **BEAM LOADING - PVC** The data listed in the Beam Loading Chart reflects testing conducted on Polyester (Type P) and vinyl ester (Type V) channels. PVC (Type E) material will differ from the Polyester/Vinyl ester Beam Loading Chart. To obtain the beam loading for PVC channel, reduce the load as follows: PVC Beam Load = $\frac{\text{(Polyester/Vinyl Ester Beam Load)}}{4}$ **NOTE**: PVC is not recommended for lengths over 24". #### **COLUMN LOADING** Column loads are forces applied directly to the end of the channel. Refer to the table on Page 13 for column loading capacity of various channels. An example of a typical column load would be the pressure exerted on a leg of an Aickinstrut Battery Rack. #### **FLANGE LOADING** Pull-out strength is the channel's resistance to a clamp or fastener inserted under the flange and put under tension. For additional information concerning specific channels, materials and their pull-out strengths, refer to the channel flange pull-out chart on the right. | Heavy Duty Channel | Pull-Out Strength* | |----------------------------|--------------------| | 20V-2000 | 449 | | 20P-2000 | 360 | | 20E-2000 | 260 | | Medium Duty Channel | Pull-Out Strength* | | 20V-1500 | 229 | | 20P-1500 | 219 | | Light Duty Channel | Pull-Out Strength* | | 20E-1000 | 239 | | 20P-1000 | 213 | | 20V-1000 | 213 | | **** | | ^{*}Values shown represent a 3:1 safety factor #### **SECTION PROPERTIES** | | | | | | | X - X | X Axis | | Y - Y Axis. | | | |---------|---------------|---------------|------------|--------|--------|-------|--------|----------------|-------------|-------|-------| | Section | Height | Width | Weight | Area | I | R | C¹ | C ² | I | R | C | | Number | (in.) | (in.) | (lbs./ft.) | (in.²) | (in.4) | (in.) | (in.) | (in.) | (in.4) | (in.) | (in.) | | 2000 | 1 5//8 | 1 5⁄⁄8 | 0.82 | 1.06 | 0.31 | 0.54 | 0.70 | 0.93 | 0.42 | 0.63 | 0.82 | | 2100 | 31/2 | 1 5⁄⁄8 | 1.64 | 2.12 | 1.77 | 0.91 | 1.63 | 1.63 | 0.85 | 0.63 | 0.82 | | 1500 | 1½ | 11/2 | 0.55 | 0.71 | 0.19 | 0.52 | 0.62 | 0.88 | 0.25 | 0.59 | 0.75 | | 1600 | 3 | 11/2 | 1.10 | 1.42 | 1.02 | 0.85 | 1.50 | 1.50 | 0.49 | 0.59 | 0.75 | | 1000 | 11//8 | 11/2 | 0.47 | 0.61 | 0.10 | 0.40 | 0.51 | 0.62 | 0.22 | 0.60 | 0.75 | | 1100 | 21/2 | 1 ½ | 0.94 | 1.22 | 0.42 | 0.59 | 1.13 | 1.13 | 0.44 | 0.60 | 0.75 | # **Channel Loading** The multipliers shown in the beam loading conversion table reflect the adjustments to be made for a variety of beam loading conditions. The multipliers should be used in conjunction with the Beam Loading Chart. The values in the Beam Loading Chart are based on a simple beam with uniform loading. By using the Beam Loading Conversion Table, you will be able to estimate the maximum recommended loading and deflection for your particular application. | LOAD AND SUPPO | LOAD
FACTOR | DEFLECTION
FACTOR | | |---|---------------------------------------|----------------------|------| | 1. Simple Beam,
Uniform Load | SPAN - | 1.00 | 1.00 | | Simple Beam, Concentrated Load at Center | + + | 0.50 | 0.80 | | 3. Simple Beam,
Two Equal Concentrated Loads at 1/4 pts | + + + | 1.00 | 1.10 | | 4. Beam Fixed at Both Ends,
Uniform Load | | 1.50 | 0.30 | | 5. Beam Fixed at Both Ends,
Concentrated Load at Center | + | 1.00 | 0.40 | | 6. Cantilever Beam,
Uniform Load | SPAN - | 0.25 | 2.40 | | 7. Cantilever Beam,
Concentrated Load at End | • | 0.12 | 3.20 | | 8. Continuous Beam, Two Equal Spans,
Uniform Load on One Span | SPAN - SPAN - | 1.30 | 0.92 | | 9. Continuous Beam, Two Equal Spans,
Uniform Load on Both Ends | * * * * * * * * * * * * * * * * * * * | 1.00 | 0.42 | | 10. Continuous Beam, Two Equal Spans,
Concentrated Load at Center of One Span | + + + | 0.62 | 0.71 | | 11. Continuous Beam, Two Equal Spans,
Concentrated Load at Center of Each Span | + + + | 0.67 | 0.48 | #### **EXAMPLE:** Determine load and deflection of a 30" 20P-2100 cantilever beam with a concentrated load on the end. #### Solution: - 1. From the load table on the previous page, the maximum load for a 30" span is 2,224 lbs. and deflection for that load is 0.177". - 2. Multiply by factors from the table above. Load = 2,224 lbs. $\times 0.12 = 267$ lbs. Deflection = 0.177" $\times 3.20 = 0.566$ " - 3. Thus, the 30" cantilever beam will support a maximum concentrated load of 267 lbs. on the end and that load will cause a 0.566" deflection. | Polyester/Vinyl Ester Beam Loading Chart | | | | | | | |--|--------------------------|----------------|------------------------------|-------------|-------------------------|-------------------| | | | | rm Beam Load
actor - 3:1) | | n Load at
1/360 Span | Maximum
Column | | Span | Part Number | Load (lbs.) | Deflection (in.) | Load (lbs.) | Deflection (in.) | Load (lbs.) | | | 20P/V-2100 | 5,559 | 0.028 | 5,559 | 0.033 | 9,454 | | 40" | 20P/V-1600 | 4,836 | 0.043 | 3,778 | 0.033 | 7,007 | | 12" | 20P/V-1100 | 3,804 | 0.082 | 1,556 | 0.033 | 5,961 | | Span | 20P/V-2000 | 3,561 | 0.102 | 1,159 | 0.033 | 5,160 | | Opan | 20P/V-1500 | 1,950 | 0.093 | 700 | 0.033 | 3,439 | | | 20P/V-1000 | 1,629 | 0.151 | 359 | 0.033 | 2,759 | | | 20P/V-2100 | 3,706 | 0.064 | 2,914 | 0.050 | 8,866 | | 4011 | 20P/V-1600 | 3,224 | 0.096 | 1,697 | 0.050 | 6,501 | | 18" | 20P/V-1100 | 2,536 | 0.183 | 691 | 0.050 | 5,509 | | Span | 20P/V-2000 | 2,374 | 0.230 | 515 | 0.050 | 4,704 | | Opan | 20P/V-1500 | 1,300 | 0.209 | 311 | 0.050 | 3,136 | | | 20P/V-1000 | 1,086 | 0.340 | 160 | 0.050 | 2,351 | | | 20P/V-2100 | 2,780 | 0.113 | 1,639 | 0.067 | 8,181 | | 24" | 20P/V-1600 | 2,418 | 0.171 | 944 | 0.067 | 5,909 | | 24 | 20P/V-1100 | 1,902 | 0.326 | 389 | 0.067 | 4,979 | | Span | 20P/V-2000 | 1,781 | 0.410 | 290 | 0.067 | 4,168 | | - 1 | 20P/V-1500 | 975 | 0.371 | 175 | 0.067 | 2,778 | | | 20P/V-1000 | 815 | 0.605 | 90 | 0.067 | 1,862 | | | 20P/V-2100 | 2,224 | 0.177 | 1,049 | 0.083 | 7,405 | | 30" | 20P/V-1600 | 1,934 | 0.267 | 604 | 0.083 | 5,236 | | 30 | 20P/V-1100 | 1,522
1,424 | 0.509 | 249
185 | 0.083
0.083 | 4,375 | | Span | 20P/V-2000
20P/V-1500 | 780 | 0.640
0.580 | 112 | 0.083 | 3,553 | | • | 20P/V-1000
20P/V-1000 | 652 | 0.945 | 57 | 0.083 | 2,369
1,298 | | | 20P/V-2100 | 1,853 | 0.254 | 730 | 0.100 | 6,451 | | | 20P/V-1600 | 1,612 | 0.384 | 420 | 0.100 | 4,482 | | 36" | 20P/V-1100 | 1,268 | 0.734 | 173 | 0.100 | 3,698 | | _ | 20P/V-2000 | 1,187 | 0.922 | 129 | 0.100 | 2,859 | | Span | 20P/V-1500 | 650 | 0.836 | 78 | 0.100 | 1,906 | | | 20P/V-1000 | 543 | 1.360 | 40 | 0.100 | 901 | | | 20P/V-2100 | 1,390 | 0.452 | 410 | 0.133 | 4,534 | | | 20P/V-1600 | 1,209 | 0.683 | 236 | 0.133 | 2,809 | | 48" | 20P/V-1100 | 951 | 1.304 | 97 | 0.133 | 2,254 | | | 20P/V-2000 | 890 | 1.638 | 72 | 0.133 | 1,636 | | Span | 20P/V-1500 | 488 | 1.486 | 44 | 0.133 | 1,091 | | | 20P/V-1000 | 407 | 2.418 | 22 | 0.133 | 507 | | | 20P/V-2100 | 1,112 | 0.707 | 262 | 0.167 | 2,902 | | 00" | 20P/V-1600 | 967 | 1.067 | 151 | 0.167 | 1,798 | | 60" | 20P/V-1100 | 761 | 2.038 | 62 | 0.167 | 1,442 | | Span | 20P/V-2000 | 712 | 2.560 | 46 | 0.167 | 1,047 | | Spail | 20P/V-1500 | 390 | 2.321 | 28 | 0.167 | 698 | | | 20P/V-1000 | 326 | 3.779 | 14 | 0.167 | 324 | | | 20P/V-2100 | 927 | 1.018 | 182 | 0.200 | 2,015 | | 70" | 20P/V-1600 | 806 | 1.536 | 105 | 0.200 | 1,248 | | 72 " | 20P/V-1100 | 634 | 2.935 | 43 | 0.200 | 1,001 | | Span | 20P/V-2000 | 594 | 3.686 | 32 | 0.200 | 727 | | Opan | 20P/V-1500 | 325 | 3.343 | 19 | 0.200 | 485 | | | 20P/V-1000 | 272 | 5.441 | 10 | 0.200 | 225 | #### **CHANNEL FITTINGS** Aickinstrut Channel Fittings are required to fabricate an Aickinstrut structure and are easily attached to Aickinstrut Channels with channel nuts and polyurethane fasteners. The fittings are offered in two types; fabricated (cut from flat stock) or molded. Fabricated fittings are made from either polyester or vinyl ester material. All molded fittings with the exception of the post bases are molded in polyurethane. Post bases are also offered in polypropylene. The 2500 Series Fittings are manufactured from 3/8" flat material. The 2800 Series Fittings are manufactured from 3/8" flat material and feature grooves which stabilize the fittings when mounted to the open side of the channel. All channel fittings are provided with 13/32" holes which accommodate 3/8" hardware, however several of the new molded fittings come with 9/16" holes 50PU-2616, 50PU-2611, and 50PU-2613. Larger diameter holes can be provided upon special request. #### Legend R = Right Hand L = Left Hand P Series Fittings are Grey V Series Fittings are Beige 2500 Series - Flat 2800 Series - Grooved #### **NOTE** Illustrations depict grooved channel fittings. #### 20P-2500, 20V-2500 (Flat) 20P-2800, 20V-2800 (Grooved) 20P-2502, 20V-2502 (Flat) 20P-2802, 20V-2802 (Grooved) 20P-2504, 20V-2504 (Flat) 20P-2804, 20V-2804 (Grooved) # **20P-2506, 20V-2506** (Flat) **20P-2806, 20V-2806** (Grooved) 50PU-2616 20P-2508, 20V-2508 (Flat) 20P-2808, 20V-2808 (Grooved) 20P-2510, 20V-2510 (Flat) 20P-2810R, 20V-2810R (Grooved) 20P-2810L, 20V-2810L (Grooved) 20P-2512, 20V-2512 (Flat) 20P-2812, 20V-2812 (Grooved) **20P-2514**, **20V-2514** (*Flat*) **20P-2814**, **20V-2814** (*Grooved*) 20P-2516, 20V-2516 (Flat) 20P-2816R, 20V-2816R (Grooved) 20P-2816L, 20V-2816L (Grooved) **20P-2518**, **20V-2518** (Flat) **20P-2818**, **20V-2818** (Grooved) 20P-2520, 20V-2520 (Flat) 20P-2820, 20V-2820 (Grooved) 20P-2522, 20V-2522 (Flat) 20P-2822, 20V-2822 (Grooved) 20P-2524, 20V-2524 (Flat) 20P-2824, 20V-2824 (Grooved) 20P-2526, 20V-2526 (Flat) 20P-2826, 20V-2826 (Grooved) 20P-2528, 20V-2528 (Flat)
20P-2828, 20V-2828 (Grooved) 20P-2530, 20V-2530 (Flat) 20P-2830, 20V-2830 (Grooved) 20P-2534, 20V-2534 (Flat) 20P-2834, 20V-2834 (Grooved) 20P-2541, 20V-2541 (Flat) 20P-2540, 20V-2540 (Flat) 20P-2840, 20V-2840 (Grooved) **50PU-2611** (Flat) 20P-2542, 20V-2542 (Flat) 50PU-2611-SP **50PU-2613** (Flat) #### 50PU-1508 (1½") 50PU-2008 (1½") #### 50PU-2045 (15/8") #### 50PU-2090 (1⁵/₈") #### 50PU-26361 #### 50PU-2636A² #### 50PU-2538 (Flat) #### 50PU-2636B³ #### 50PU-29364 20PU-5853 (1⁵/₈"), 20PU-5854 (1¹/₂"), 20PU-5855 (1¹/₈"), 20PP-5853 (1⁵/₈"), 20PP-5854 (1¹/₂"), 20PP-5855 (1¹/₈") 20PU-5903 (3¹/₄"), 20PU-5904 (3"), 20PU-5905 (2¹/₄"), 20PP-5903 (3¹/₄"), 20PP-5904 (3"), 20PP-5905 (2¹/₄") Note: Double post base- $\frac{3}{8}$ x 2.5 to go all the way through Note: Grooved fittings are designed to aid in the alignment of connecting two pieces Aickinstrut. The groove is engineered to wrap around the channel to secure the accurate connection without the use of angle tools. Grooved fittings are to be used with standard Aickinstrut channels only. #### AICKINCLAMPS DESIGN LOAD INFORMATION There are two types of piping system loadings, overhead (Type 1) and vertical (Type 2) as described below. All Aickinstrut pipe straps and clamps show the recommended loading for both types of loading. #### Type 1 Design Load The design load shown represents pipes supported below the strut. The design loads shown are based on a minimum ultimate failure safety factor of 3:1. #### Type 2 Design Load The design loading shown can be achieved with the addition of a vertical stop lock assembly (Part #200-4219) installed directly beneath the pipe clamp. The adjacent illustration shows how the vertical stop lock assembly provides additional support for pipe and how it can be used to achieve full Type 2 design loads. Design loads are based on a minimum clamp slip safety factor or 3:1. It is recommended that stop lock assemblies be used for all vertical pipe support applications. #### **Adjustable Pipe Clamps** Aickinstrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be utilized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Aickinclamps sized $6^{1}/2^{11} - 20^{11}$ are to be used only in non-load bearing applications. These are applications where the weight of the pipe is being supported by Aickinstrut structural members (see figure on right). Aickinclamps can safely be used in temperatures up to 160° E. For operating temperatures of 160° 230°E, it is recommended to use PVDF clamps. PVDF clamps are available as a special order. Contact the factory for pricing and availability. Care should be taken not to exceed 3 ft./ lbs. of torque on the adjustable pipe straps. | Part | O.D. Pipe | Design Load (lbs.)* | | Torque | |----------|---------------------|---------------------|--------|-------------| | Number | Size (in.) | Type 1 | Type 2 | (ft./lbs.) | | 200-3100 | ½ - 1½ | 135 | 65 | 10 in./lbs. | | 200-3110 | $1^{1/2} - 2^{1/4}$ | 135 | 65 | 3 | | 200-3120 | $2^{1/4} - 3^{1/4}$ | 145 | 70 | 3 | | 200-3130 | 3 – 4 | 215 | 70 | 3 | | 200-3140 | $4 - 6\frac{1}{2}$ | 215 | 70 | 3 | ^{*}Design loads shown represent a 3:1 safety factor. #### **Strap Polyurethane Insert** Note: For use with -SST systems only Part Number 200-4101 20 #### **Rigid Pipe Clamps** Aickinstrut Rigid Pipe Clamps resemble the more traditional style of pipe clamps. These clamps are made from glass-reinforced polyurethane and are sized based on the pipe inside diameter or nominal size. Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F), PVDF clamps are available as a special order. Contact the factory for pricing and availability. Care should be taken not to exceed the recommended torque values of the rigid pipe clamps. | Part | Nominal | PVC
Sch. 80 and | Des
Loads | • | FRP Bolt | FRP Bolt
Torque | |---------|--------------------------------------|--------------------|--------------|--------|-------------------------------------|--------------------| | Number | Size (in.) | Rigid Metal | Type 1 | Type 2 | Size (in.) | (ft./lbs.) | | PCR-050 | 1/2 | 0.840 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-075 | 3/4 | 1.050 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-100 | 1 | 1.315 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-125 | 1 ½ | 1.660 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-150 | 11/2 | 1.900 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-200 | 2 | 2.375 | 225 | 90 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-250 | 2 ¹ / ₂ | 2.875 | 225 | 90 | $\frac{3}{8}$ x $\frac{1}{4}$ | 3 | | PCR-300 | 3 | 3.500 | 225 | 90 | $\frac{3}{8}$ x $\frac{1}{4}$ | 3 | | PCR-400 | 4 | 4.500 | 300 | 125 | $\frac{3}{8}$ x $1\frac{1}{4}$ | 3 | | PCR-600 | 6 | 6.625 | 300 | 125 | 3/8 x 1 ¹ / ₄ | 3 | | PCR-800 | 8 | 8.625 | 300 | 125 | 3/8 x 1 ¹ / ₄ | 3 | Note: Hardware included (1) 375PU-125 and (1) 375PU-000 *Design loads shown represent a 3:1 safety factor. #### **Two Hole Pipe Straps** Aickinstrut Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Aickinstrut Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications. The two hole pipe straps are manufactured from a fireretardant, glass reinforced polyester resin. For extreme chemical environments, the straps can be manufactured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values. | Part | _ | nsion | Bolt Size | Material | _ | oad (lbs)* | Torque | |--------|---------------------------------------|---------|------------------|---|--------|------------|------------| | Number | A (in.) | B (in.) | (in.) | Size (in.) | Type 1 | Type2 | (ft./lbs.) | | PS050 | 0.840 | 4.840 | 1/2 | ¹⁄4 x 1⁵⁄8 | 135 | 50 | 4 | | PS075 | 1.050 | 5.050 | 1/2 | ¹⁄4 x 1⁵⁄8 | 135 | 50 | 4 | | PS100 | 1.315 | 5.315 | 1/2 | ¹⁄₄ x 15⁄⁄8 | 135 | 50 | 4 | | PS150 | 1.900 | 5.900 | 1/2 | ¹⁄₄ x 1 5⁄8 | 135 | 50 | 4 | | PS200 | 2 ³ / ₈ | 6.375 | 1/2 | ¹⁄₄ x 1 5⁄⁄8 | 135 | 50 | 4 | | PS250 | 2 ⁷ /8 | 6.875 | 1/2 | ¹⁄4 x 1 5⁄8 | 135 | 50 | 4 | | PS300 | 31/2 | 7.500 | 1/2 | ¹⁄4 x 1⁵⁄8 | 135 | 50 | 4 | | PS350 | 4 | 8.000 | 1/2 | ¹⁄₄ x 1 5⁄⁄8 | 135 | 50 | 4 | | PS400 | $4^{1/2}$ | 8.500 | 1/2 | ¹⁄4 x 1 5⁄8 | 175 | 60 | 4 | | PS500 | 5 ⁹ ⁄ ₁₆ | 9.563 | 1/2 | ¹ / ₄ x 1 ⁵ / ₈ | 175 | 60 | 4 | | PS600 | 65//8 | 10.625 | 1/2 | $^{1}/_{4}$ x $1^{5}/_{8}$ | 175 | 60 | 4 | | PS800 | 8 5//8 | 12.625 | 1/2 | $^{1}/_{4} \times 1^{5}/_{8}$ | 225 | 125 | 4 | | PS1000 | 103/4 | 15.750 | 5/8 | ¹⁄₄ x 1 5⁄8 | 225 | 125 | 10 | | PS1200 | 12 ³ / ₄ | 16.250 | 5/8 | ¹⁄4 x 1 5⁄8 | 225 | 125 | 10 | | PS1400 | 14 | 18.000 | 5/8 | 3⁄8 x 1 5∕8 | 250 | 150 | 10 | | PS1600 | 16 | 20.000 | 5/8 | 3⁄8 x 15⁄8 | 250 | 150 | 10 | | PS1800 | 18 | 23.000 | 5/8 | 3% x 15% | 250 | 150 | 10 | When bolting onto 15%" or 11%" channel a 11%" long bolt is required. *Design loads shown represent a 3:1 safety factor. Notes: Bolts and channel nuts are sold separately. #### Nonmetallic U-bolts Aickinstrut Nonmetallic U-Bolts provide a corrosion resistant alternative to traditional metallic U-Bolts. Made from glass-reinforced polyurethane, these bolts will outlast stainless steel in most corrosive applications. Nonmetallic U-Bolts have oversized diameters which allow them to hold steel conduit and plastic pipe. Each U-Bolt comes with two polyurethane hex nuts. Additional nuts and washers can be purchased separately. The U-Bolts can also be installed to allow for thermal expansion and contraction of plastic pipe as shown here. Note: Plate not included. Illustration purpose only | Part
Number | Size (in.) | "A" Dim. | "B" Dim. | "C" Dim. | "D" Dim. | "TL" Dim. | Load
(lbs.)* | Torque
(in./lbs.)* | |----------------|------------|----------|----------|----------|----------|-----------|-----------------|-----------------------| | UB-050 | 1/2 | 0.937 | 0.375 | 1.568 | 2.412 | 1.25 | 135 | 40 | | UB-075 | 3/4 | 1.125 | 0.375 | 1.662 | 2.600 | 1.25 | 135 | 40 | | UB-100 | 1 | 1.375 | 0.375 | 1.787 | 2.850 | 1.25 | 135 | 40 | | UB-125 | 11/4 | 1.687 | 0.375 | 1.943 | 3.162 | 1.25 | 135 | 40 | | UB-150 | 1½ | 2.000 | 0.375 | 2.100 | 3.475 | 1.25 | 135 | 40 | | UB-200 | 2 | 2.437 | 0.500 | 2.468 | 4.187 | 1.50 | 135 | 80 | | UB-250 | 21/2 | 2.937 | 0.500 | 2.718 | 4.687 | 1.50 | 135 | 80 | | UB-300 | 3 | 3.562 | 0.500 | 3.031 | 5.312 | 1.50 | 135 | 80 | | UB-350 | 31/2 | 4.062 | 0.500 | 3.281 | 5.812 | 1.50 | 135 | 80 | | UB-400 | 4 | 4.562 | 0.500 | 3.531 | 6.312 | 1.50 | 135 | 80 | | <u>UB-600</u> | 6 | 6.750 | 0.625 | 5.750 | 9.875 | 3.25 | 135 | 120 | #### **Channel Spacers 50PU-500SP** Channel spacers are designed to prevent wall compression under heavy loading conditions. Such loading occurs during the torquing of hardware for channel fittings. The spacers are molded from polyurethane and will accommodate 3 %" and 1 ½" bolts. The spacers are designed to be used only with 1^5 %" and 1^1 ½" channels. #### **Channel End Cap AIC-EC** The Aickin-End Cap is made from red PVC and designed for 15%" channel. End caps are desired when the ends of the channel need to be enclosed. The Aickin-End Cap easily installs by pressing it onto the end of the channel opening. #### Channel Capping Strip 20E-5000 Channel Capping Strip is made from PVC and installs simply by pressing it onto the channel opening. It is designed to be used when a cover is desired for the channel opening (such as concrete embedment
channel). ^{*}Torque and load values shown represent a 3:1 safety factor. #### **Fiberfast Bolts** Fiberfast bolts are provided in two styles and five diameters (${}^{1}4$ ", ${}^{3}4$ ", ${}^{1}2$ ", ${}^{5}8$ " and ${}^{3}4$ ") and range in length from ${}^{1}4$ " to ${}^{3}4$ ". The flanged style incorporates a molded washer collar which eliminates the need for a washer. The flanged style is provided for ${}^{1}4$ " and ${}^{1}2$ " diameter bolts. Flanged bolts are available in ${}^{3}8$ " diameter as a special order item. The hex head style is provided for all ${}^{3}8$ ", ${}^{5}8$ " and ${}^{3}4$ " diameter bolts. All Fiberfast bolts are not fully threaded, therefore, shoulder length (nonthreaded portion) dimensions have been provided. Fiberfast bolts are ideal for mechanical connections that require a high degree of corrosion resistance. The ³/₈" diameter fasteners are recommended for all channel fitting mechanical connections. All Fiberfast bolts are manufactured from glass-reinforced polyurethane and are packaged in bags containing 25 pieces. #### **Hex Flange Bolts** #### **Hex Bolts** | Size
(in.) | Thread
Shear
(lbs.)* | Shank
Shear
(lbs.)* | Shoulder
Length
(in.) | Torque
(ft./lbs.) | |--------------------------------|--|---|---|--| | $\frac{1}{4}$ x $\frac{3}{4}$ | 110 | 210 | Full Thread | 10 In./lbs. | | $\frac{1}{4}$ x 1 | 110 | 210 | Full Thread | 10 In./lbs. | | $\frac{1}{4}$ x $\frac{1}{2}$ | 110 | 210 | 1/2 | 10 In./lbs. | | 5⁄16 x 1 | 160 | 300 | Full Thread | 20 In./lbs. | | 5/16 x 1 1 1/4 | 160 | 300 | Full Thread | 20 In./lbs. | | 5⁄16 x 2 | 160 | 300 | 1/2 | 20 In./lbs. | | $\frac{1}{2}$ x $\frac{1}{4}$ | 450 | 870 | Full Thread | 8 | | $\frac{1}{2}$ x $\frac{1}{2}$ | 450 | 870 | Full Thread | 8 | | ½ x 2 | 450 | 870 | 3/4 | 8 | | $\frac{1}{2}$ x $2\frac{1}{2}$ | 450 | 870 | 3/4 | 8 | | $\frac{1}{2}$ x 3 | 450 | 870 | 1 | 8 | | ½ x 3½ | 450 | 870 | 23/16 | 8 | | | (in.) 1/4 x 3/4 1/4 x 1 1/4 x 11/2 5/16 x 1 5/16 x 11/4 5/16 x 2 1/2 x 11/4 1/2 x 11/2 1/2 x 2 1/2 x 21/2 1/2 x 3 | Size (lbs.)* 1/4 x 3/4 110 1/4 x 1 110 1/4 x 11/2 110 5/16 x 1 160 5/16 x 11/4 160 5/16 x 2 160 1/2 x 11/4 450 1/2 x 11/2 450 1/2 x 2 450 1/2 x 21/2 450 1/2 x 3 450 | Size (in.) Shear (lbs.)* Shear (lbs.)* ½x 3¼ 110 210 ½x 1 110 210 ½x 1½ 110 210 ½x 1½ 160 300 ½x 1¼ 160 300 ½x 2 160 300 ½x 1¼ 450 870 ½x 1½ 450 870 ½x 2 ½ 450 870 ½x 3 450 870 ½x 3 450 870 | Size (in.) Shear (lbs.)* Shear (lbs.)* Length (in.) $1/4 \times 3/4$ 110 210 Full Thread $1/4 \times 1$ 110 210 Full Thread $1/4 \times 11/2$ 110 210 $1/2$ $5/6 \times 1$ 160 300 Full Thread $5/6 \times 1$ 160 300 Full Thread $5/6 \times 2$ 160 300 $1/2$ $1/2 \times 2$ 450 870 Full Thread $1/2 \times 11/2$ 450 870 Full Thread $1/2 \times 2$ 450 870 $3/4$ $1/2 \times 2$ 450 870 $3/4$ $1/2 \times 3$ 450 870 1 | | Part
Number | Size
(in.) | Thread
Shear
(lbs.)* | Shank
Shear
(lbs.)* | Shoulder
Length
(in.) | Torque
(ft./lbs.) | |----------------|-------------------------------------|----------------------------|---------------------------|-------------------------------|----------------------| | 375PU-125 | 3/8 x 1 ¹ / ₄ | 250 | 470 | Full Thread | 3 | | 375PU-150 | $\frac{3}{8}$ x $\frac{1}{2}$ | 250 | 470 | 1/4 | 3 | | 375PU-200 | 3⁄8 x 2 | 250 | 470 | 1/2 | 3 | | 375PU-250 | 3/8 x 2 ¹ / ₂ | 250 | 470 | 3/4 | 3 | | 375PU-300 | 3⁄8 x 3 | 250 | 470 | 1 | 3 | | 625PU-125 | 5⁄8 x 1 1∕4 | 700 | 1,360 | 1/4 | 12 | | 625PU-150 | 5⁄8 x 11∕⁄2 | 700 | 1,360 | 1/4 | 12 | | 625PU-200 | 5⁄8 x 2 | 700 | 1,360 | 1/4 | 12 | | 625PU-250 | 5⁄8 x 2 ¹ ∕₂ | 700 | 1,360 | 1/4 | 12 | | 625PU-300 | 5⁄8 x 3 | 700 | 1,360 | 1/4 | 12 | | 625PU-350 | 5⁄8 x 3 ¹ ∕₂ | 700 | 1,360 | 1 ¹ / ₄ | 12 | ^{*}Thread shear values shown represent a 3:1 safety factor. #### **Vinyl Ester Square Head Bolts** Vinyl ester square head bolts are used for concrete mounting and general purpose fastening applications. The square head bolts are constructed from vinyl ester all-thread rod and vinyl ester square nuts. The units are bonded together with a durable two part urethane adhesive. The square head bolts are offered in ¾" diameter but can be supplied in other diameters as a special order. Contact the factory for pricing and availability of special diameter square head bolts. | | | Thread | | |----------|-------------------------------|---------|-------------| | Part | Size | Shear | Torque | | Number | (in.) | (lbs.)* | (ft./lbs.)* | | 375V-100 | 3⁄8 x 1 | 250 | 10 | | 375V-125 | $\frac{3}{8}$ x $\frac{1}{4}$ | 250 | 10 | | 375V-150 | $\frac{3}{8}$ x $\frac{1}{2}$ | 250 | 10 | | 375V-175 | 3/8 x 13/4 | 250 | 10 | | 375V-200 | 3⁄8 x 2 | 250 | 10 | | 375V-250 | 3/8 x 21/2 | 250 | 10 | | 375V-300 | 3/8 x 3 | 250 | 10 | | 375V-350 | $3\% \times 3^{1}/_{2}$ | 250 | 10 | | 375V-400 | 3⁄8 x 4 | 250 | 10 | | | | | | ^{*}Thread shear values shown represent a 3:1 safety factor. ^{*}Thread shear values shown represent a 3:1 safety factor. #### **Fiberfast Hex Nuts** Aickinstrut hex nuts are available in two styles; hex and hex flange nuts. The Aickinstrut hex nut is similar in design to the conventional hex nut and is preferred for channel fitting connections. The Aickinstrut hex flange nut is preferred for applications that require additional thread engagement (such as with all-thread rod) or maximum thread shear strength. All nuts are manufactured from glass-reinforced polyurethane and are packaged in bags containing 25 pieces. All hex and hex flange nuts are available in PVDF and Polypropylene and metric sizes as a special order. Contact the factory for pricing and availability. #### **Hex Nuts** #### **Hex Flange Nuts** **Part** Number 375PU-FN-000 500PU-FN-000 625PU-FN-000 750PU-FN-000 1000PU-FN-000 3:1 safety factor. # Vinyl Ester Square Nuts Square nuts are manufactured from pultruded vinyl ester square stock. They are recommended for applications that require high thread shear values. Square nuts are packaged in bags containing 25 pieces. | Part
Number | Size
(in.) | Thread
Shear
(lbs.)* | Height
(In.) | Torque
(ft./lbs.) | |----------------|----------------|----------------------------|-----------------|----------------------| | 375V-000 | 3/8-16 | 1,300 | 0.437 | 10 | | 500V-000 | ½-13 | 1,700 | 0.562 | 10 | | 625V-000 | 5⁄8 -11 | 1,700 | 0.687 | 10 | | 750V-000 | 3/4-10 | 1,700 | 0.812 | 10 | | 1000V-000 | 1-8 | 1,700 | 0.937 | 10 | ^{*}Thread shear values shown represent a 3:1 safety factor. | Part
Number | Size
(in.) | Thread
Shear
(lbs.)* | Height
(in.) | Torque
(ft./lbs.) | |----------------|-----------------|----------------------------|-----------------|----------------------| | 250PU-000 | 1/4-20 | 150 | 0.218 | 10 in./lbs. | | 312PU-000 | 5√16 -18 | 160 | 0.273 | 20 in./lbs. | | 375PU-000 | 3⁄8 - 16 | 460 | 0.328 | 3 | | 500PU-000 | 1/2-13 | 800 | 0.437 | 8 | | 625PU-000 | ⅓-11 | 1,000 | 0.546 | 12 | | 750PU-000 | 3-10 | 1,000 | 0.640 | 15 | | 1000PU-000 | 1-8 | 1,100 | 0.859 | 17 | ^{*}Thread shear values shown represent a 3:1 safety factor. Flat Washers are made from PVC and are available for 1/4" diameter through connections that utilize hex nuts and bolts. PVC washers are packaged in 1". PVC washers are recommended for **Flat Washers** #### **All-Thread Washers** Aickinstrut All-Thread Washers are flat fiberglass washers for use with FRP all-thread rods. All-Thread rod washers are 1/4" thick with a 1-7/8" diameter and are available in polyester or vinyl ester resin. **Thread** (lbs.)* 500 1,200 2,200 2,900 2900 **Shear Height Torque** 0.750 0.855 1.220 1.590 1.75 (In.) (ft./lbs.) 3 8 12 15 17 Size (in.) **%-16** ½-13 **%-11** 3/4-10 1-8 *Thread shear values shown represent a To order vinyl ester, add the suffix "V" to the part number. bags containing 25 pieces. | Part | Size | Outside Diameter | |-----------|-------|-------------------------| | Number | (in.) | (in.) | | 250E-999 | 1/4 | 0.49 | | 312E-999 | 5/16 | 0.75 | | 375E-999 | 3/8 | 1.00 | | 500E-999 | 1/2 | 1.25 | | 625E-999 | 5/8 | 1.50 | | 750E-999 | 3/4 | 1.50 | | 1000E-999 | 1 | 2.25 | | | | | **Part Number Part Number All-Thread Round Washer* Square Washer** Rod Size (in.) WR375 3/8 WR375SQ WR500 WR500SQ 1/2 5/8 WR625 WR625SQ WR750 WR750SQ 3/4 ^{*} Add the suffix "V" to the part number to specify vinyl ester Example "WR500V" ^{*} Add the suffix "-SQ" to the part number to specify square washer Example "WR500-SQ" #### **Channel Nuts** Channel nuts are provided in two types; Standard Duty and Heavy Duty. Standard Duty channel nuts are designed for light duty
applications that do not require high thread shear values. Standard duty channel nuts can also be used with all sizes of Aickinstrut Channel. Heavy duty channel nuts are designed to be used where high thread shear values or spring nuts are required. Heavy duty channel nuts can not be used with Series 1000 Channel (light duty). All channel nuts are manufactured from glass-reinforced polyurethane and are packaged in bags containing 25 pieces. Channel nuts are also available in PVDF as a special order. Contact the factory for pricing and availability. #### **Heavy Duty Channel Nuts** | | | inreau | | |------------|---------------------------------|---------|------------| | Part | Size | Shear | Torque | | Number | (in.) | (lbs.)* | (ft./lbs.) | | 375PU-CNHD | ³ / ₈ -16 | 1,400 | 8 | | 500PU-CNHD | 1/2-13 | 1,400 | 8 | | 625PU-CNHD | 5/8-11 | 1,400 | 10 | | 750PU-CNHD | ³ / ₄ -10 | 1,400 | 10 | | 10PU-CNMHD | 10 mm | 1,400 | 8 | | 12PU-CNMHD | 12 mm | 1,400 | 8 | | 16PU-CNMHD | 16 mm | 1,400 | 10 | | 20PU-CNMHD | 20 mm | 1,400 | 10 | | | | | | Throad #### **Saddle Clips** Aickinstrut Saddle Clips make fastening through Aickinstrut channel much easier. The clips mate with the exterior of the channel flanges and are secured with threaded rods and nuts. The saddle clips are manufactured from glass reinforced polyurethane and are supplied in bags of 25 pieces. | Part | Size | |----------|-------| | Number | (ln.) | | 200-4226 | 3/8 | | 200-4217 | 1/2 | | 200-4341 | 5/8 | | 200-4342 | 3/4 | #### **Standard Duty Channel Nuts** | Part | Size | Thread Shear | Torque | |----------|----------------------------------|---------------------|------------| | Number | (in.) | (lbs.)* | (ft./lbs.) | | 250PU-CN | 1/4-20 | 460 | 2 | | 312PU-CN | ⁵ ⁄ ₁₆ -18 | 460 | 2 | | 375PU-CN | ³ / ₈ -16 | 460 | 3 | | 500PU-CN | 1/2-13 | 460 | 3 | | 10PU-CN | 10 mm | 460 | 3 | | 12PU-CN | 12 mm | 460 | 3 | | 10PU-CNS | #10 Screv | v 460 | N/A | | | | | | ^{*}Thread shear values shown represent a 3:1 safety factor. #### **Stop-Lock Assemblies** Aickinstrut Stop-Lock Assemblies reduce the chance of pipe slippage when running supports vertically. Stop-Locks are recommended for applications that are subject to vibration, have regular contact with fluids or are vertically mounted (Type 2). The Stop-Locks fit all three sizes of channel. Stop-Locks are offered with a $\frac{3}{8}$ ", $\frac{1}{2}$ " and $\frac{5}{8}$ " bolt size. The $\frac{5}{8}$ " Stop-Lock Assembly is supplied with a heavy duty channel nut (the $\frac{5}{8}$ " Stop-Lock Assembly will not | Part
Number | Size
(in.) | Force
Resistance
(lbs.)* | Torque
(ft./lbs.) | |----------------|---------------|--------------------------------|----------------------| | 200-4227 | 3/8 | 200 | 7 | | 200-4219 | 1/2 | 220 | 12 | | 200-4343 | 5/8 | 250 | 15 | ^{*}Force resistance values shown represents a 3:1 safety factor. ^{*}Thread shear values shown represent a 3:1 safety factor. #### **Clevis Hangers** Clevis hangers are available in two styles; molded and hand lay-up. The molded clevis hangers are manufactured from glass-reinforced polyurethane and are available for sizes $\frac{1}{2}$ " through 6". The hand lay-up clevis hangers are manufactured from glass-reinforced polyester and are available for sizes 1" through 24". #### **Molded Clevis Hangers** | Part
Number | Nominal
Diameter
(in.) | Max.
Pipe O.D.
(in.) | "A" Dim. | "B" Dim. | "C" Dim. | Hanger
Rod
(in.) | Load
(lbs.)* | |----------------|------------------------------|----------------------------|----------|----------|----------|------------------------|-----------------| | CVHPU-100 | 1/2 - 1 | 1 | 1.500 | 4.25 | 1.25 | 1/2 | 670 | | CVHPU-150 | 11/4 - 11/2 | 1½ | 2.000 | 5.14 | 1.25 | 1/2 | 670 | | CVHPU-200 | 1½ - 2 | 2 | 2.500 | 6.52 | 1.25 | 1/2 | 730 | | CVHPU-400 | 21/2 - 4 | 4 | 5.125 | 10.00 | 1.50 | 1/2 | 1,150 | | CVHPU-600 | 4½ - 6 | 6 | 6.750 | 12.33 | 1.50 | 1/2 | 1,170 | ^{*}Design load values shown represent a 3:1 safety factor. #### **Hand Lay-Up Clevis Hangers** | Part | Size Range (In.) |) | Dii | nensions (i | n.) | Hanger
Rod | Trans
Rod | Spreader
Rod O.D. | Loads | |----------|-------------------------------------|------------------------------|--------------------------------|--------------------------------------|------|---------------|--------------|----------------------|---------| | Number | A | T | Н | H1 | W | (in.) | (in.) | (in.) | (lbs.)* | | 100-1500 | 1 - 1½ | 1/8 | 23/4 | 17/8 | 11/2 | 1/2 | 3/8 | 1/2 | 60 | | 100-1501 | $1\frac{1}{2} - 2$ | 1/8 | $3^{1}/_{2}$ | 2 ³ / ₈ | 11/2 | 1/2 | 3/8 | 1/2 | 60 | | 100-1502 | $2 - 2\frac{5}{8}$ | 1/8 | 43/4 | 3 | 2 | 1/2 | 3/8 | 1/2 | 90 | | 100-1503 | $2^{1/2} - 3^{1/4}$ | 1/8 | 51/2 | 3 ⁵ / ₈ | 2 | 1/2 | 3/8 | 1/2 | 120 | | 100-1504 | $3 - 3\frac{7}{8}$ | 1/8 | 7 | 4 ¹ / ₄ | 2 | 5/8 | 3/8 | 1/2 | 160 | | 100-1505 | $4 - 5\frac{1}{8}$ | ³ / ₁₆ | 81/2 | 5 ⁵ / ₈ | 2 | 5/8 | 3/8 | 1/2 | 250 | | 100-1506 | 6 - 71/8 | 3/16 | 10 ⁷ / ₈ | 71/2 | 3 | 5/8 | 3/8 | 1/2 | 300 | | 100-1507 | $8 - 9^{1/4}$ | 1/4 | 14 | 93/4 | 3 | 5/8 | 3/8 | 1/2 | 350 | | 100-1508 | 10 - 11 ³ / ₈ | 1/4 | 18 | 12 | 4 | 5/8 | 1/2 | 3/4 | 450 | | 100-1509 | 12 - 13½ | 1/4 | 21½ | 14 ¹ / ₈ | 5 | 5/8 | 1/2 | 3/4 | 600 | | 100-1510 | 14 - 15¾ | 1/4 | 24½ | 16½ | 5 | 3/4 | 1/2 | 3/4 | 700 | | 100-1511 | 16 - 18 | 3/8 | 273//8 | 191/2 | 6 | 3/4 | 3/4 | 1 | 750 | | 100-1512 | 19 – 21 | 3/8 | 34½ | 221/2 | 6 | 3/4 | 3/4 | 1 | 800 | | 100-1513 | 21 - 22 | 1/2 | $35\frac{1}{2}$ | 24 | 6 | 3/4 | 3/4 | 1 | 850 | | 100-1514 | 22 - 24 | 1/2 | 41 | 28 | 6 | 3/4 | 3/4 | 1 | 900 | ^{*}Design load values shown represent a 3:1 safety factor. #### **Beam Clamps** Aickinstrut beam clamps are available in two styles; molded and fabricated. The molded beam clamps are manufactured from glass-reinforced polyurethane and can accommodate $\frac{3}{8}$ ", $\frac{1}{8}$ " and $\frac{5}{8}$ " hanger rod sizes. The molded beam clamps utilize the traditional "C" clamp style design. The fabrication beam clamps are manufactured from vinyl ester flat stock and utilize polyurethane bolts and channel nuts for clamping. Fabricated beam clamps are available for attaching to $\frac{1}{4}$ ", $\frac{3}{8}$ " and $\frac{1}{2}$ " thick beam flanges. Each fabricated beam clamp assembly includes four (4) $\frac{1}{2}$ " standard duty channel nuts, four (4) $\frac{1}{2}$ " Polyurethane bolts and two (2) attachment clips. All Aickinstrut beam clamps allow easy attachment of threaded rod to "I" beams or other structural assemblies. #### **Molded Beam Clamps** | | | Thread | | |----------|-------|---------|------------| | Part | Size | Shear | Torque | | Number | (in.) | (lbs.)* | (ft./lbs.) | | 375PU-BC | 3/8 | 400 | 10 | | 500PU-BC | 1/2 | 400 | 10 | ^{*}Design load values shown represent a 3:1 safety factor. #### **Cope-Glas Beam Clamps** | | | Thread | | |--------|-------|---------|------------| | Part | Size | Shear | Torque | | Number | (in.) | (lbs.)* | (ft./lbs.) | | RGBC1 | 3/8 | 500 | 10 | | RGBC2 | 1/2 | 500 | 10 | | RGBC3 | 5/8 | 500 | 10 | #### Beam Clip - 375PU-BCCLP (3/8") #### **Fabricated Beam Clamps** | Part
Number | Flange
Thickness
(in.) | Thread
Shear
(lbs.)* | Torque
(ft./lbs.) | |----------------|------------------------------|----------------------------|----------------------| | 20V-2BC-25 | 1/4 | 600 | 10 | | 20V-2BC-37 | 3/8 | 600 | 10 | | 20V-2BC-50 | 1/2 | 600 | 10 | ^{*}Design load values shown represent a 3:1 safety factor. Bolts and channel nuts are $\frac{1}{2}$ " diameter. #### **Threaded Rod** Pultruded threaded rods are an excellent choice for hanging and fastening Aickinstrut Channel. These rods can also be used with either the Aickinstrut vinyl ester square nuts, polyurethane hex nuts, hex flange nuts and Aickinstrut channel nuts. All FRP threaded rod is manufactured from pultruded vinyl ester resin and is gray in color. The standard rod lengths are 4' and 8'. | Part
Number | Size
(in.) | Weight
(lbs.) | Thread
Shear
(Ibs.)* | Torque
(ft./lbs.) | |----------------|---------------------------------|------------------|----------------------------|----------------------| | 200-3827 | ³ / ₈ -16 | 0.07 | 415 | 5 | | 200-3828 | ¹ / ₂ -13 | 0.12 | 570 | 10 | | 200-3829 | ⁵ ⁄₀ -11 | 0.18 | 1,260 | 40 | | 200-3830 | ³ / ₄ -10 | 0.28 | 1,700 | 50 | | 200-3831 | 1-8 | 0.50 | 3,000 | 60 | ^{*} Thread shear values shown represent a 3:1 safety factor. # Channel Hangers AIC-CH-P (Polyester) AIC-CH-V (Vinyl Ester) The Aickin-Channel Hanger is designed to support fiberglass structural "C" channel that is being used as a raceway system for cables, tubing or small diameter piping. The Aickin-Channel Hanger is available in either polyester or vinyl ester resin and is simply supported from a ½" FRP all-thread rod and beam clamp (not provided). The Channel Hanger will accommodate "C" channel width sizes 2" through 8". #### **A-Konnector Rod Couplers** A-Konnectors provide an excellent means for extending Aickinstrut FRP all-thread rods beyond their standard lengths. A-Konnectors are manufactured from glass-reinforced polyurethane and are colored gray. A-Konnectors are packaged in bags containing 25 pieces. | Part
Number | Size
(in.) | Length
(ln.) | Thread
Shear
(lbs.)* | |----------------|---------------------------------|--------------------------------------|----------------------------| | 200-3840 | ³ ⁄ ₈ -16 | 2 ¹ / ₄ | 800 | | 200-3841 | ¹ / ₂ -13 | 21/4 | 870 | | 200-3842 | ⁵ /8 -11 | 21/4 | 1,500 | | 200-3843 | ³ / ₄ -10 | 21/4 | 1,500 | ^{*} Thread shear values shown represent a 3:1 safety factor. ^{*} To order eight foot lengths, add suffix "-96" to part number (EX: 200-3827-96) #### **Power-Rack Stanchions** The Power-Rack Stanchion is the new alternative to traditional iron cable stanchions used for utility and industrial cable supports. Made entirely from
glass-reinforced nylon, these stanchions out-perform metallic supports against corrosion. The extended life-span of the Power-Rack Stanchions makes them the logical choice over metallic cable supports. The Power-Rack Stanchion is available in two different lengths and four different arm lengths. The unique interlocking design allows the arm to "lock" into nine different levels on the $14\frac{1}{4}$ " stanchions and fourteen on the $17\frac{1}{2}$ " stanchion. Glass-reinforced polyurethane stanchions are available as a special order. Contact the factory for pricing and availability. **Dimensions** – The stanchion back is designed with %6" wide x ½6" long holes to accept fasteners for mounting. There are two mounting holes in the 21¾" long stanchion and three mounting holes in the 33¾6" long stanchion. Thickness at the slotted mounting holes is ½1%". The mounting holes are spaced on 12" centers and require ½" diameter fasteners. **Installation –** The Power-Rack Stanchions can be anchored into existing concrete structures using any good quality industrial anchoring system. For new concrete structures, the Power-Rack Stanchions can be mounted to Aickinstrut concrete embedment channel and attached with ½" channel nuts and ½"x 3" Fiberfast Bolts. **Fire Retardance** – Power-Rack materials meet or exceed the requirements of UL94 HB. **Loading** – The recommended allowable loads on Power-Rack Stanchions vary depending upon the position of the arm. Following the guidelines listed below will ensure a safe, reliable installation. - Total load on any one arm should not exceed 800 lbs. - The sum of the loads on any arm multiplied by their distances to the wall stanchion should not exceed 1200 in./ lbs. **Example** – A cable weighing 200 lbs. is positioned on an arm at a distance of 5" from the wall stanchion. If the total load is less than 800 lbs and the sum of the load multiplied by their distances to the wall stanchion does not exceed 1200 in./lbs., then the system is adequate. In this case, Total load (200<800 lbs) = 0K Tot. moment (200x5 in. = 1000 < 1200 in./lbs.) = 0K | Part No. | Description | Weight (lbs.) | Load (lbs.)* | |-----------|--------------------------------------|---------------|--------------| | 20N-ARM08 | 8" Arm | 1.00 | 800 | | 20N-ARM14 | 14½" Arm | 1.16 | 800 | | 20N-ARM17 | 17½" Arm | 1.45 | 800 | | 20N-ARM23 | 23 ⁷ / ₈ " Arm | 1.86 | 800 | | 20N-STA21 | 213/4" Stanchion | 1.49 | N/A | | 20N-STA33 | 335/16" Stanchion | 2.31 | N/A | ^{*}Design load values shown represent a 3:1 safety factor. #### **Wall Brackets** Constructed of Aickinstrut fiberglass components, Wall Support Brackets are an alternative tray hanging system. The Aickinstrut product line offers a complete line of fasteners that can be used with the wall brackets in many different tray clamping schemes. Installation guidelines for wall brackets are located in the installation Procedures Section of this catalog. To specify vinyl ester, add suffix "V" to part number. | Part No. | Tray Width | Dim. A | Dim.B | |----------|------------|-------------|------------| | CTB06A | 06" | 11"(279mm) | 10"(254mm) | | CTB09A | 09" | 14"(356mm) | 12"(305mm) | | CTB12A | 12" | 17"(432mm) | 13"(330mm) | | CTB18A | 18" | 23"(584mm) | 16"(406mm) | | CTB24A | 24" | 29"(737mm) | 19"(483mm) | | CTB30A | 30" | 35"(889mm) | 22"(559mm) | | CTB36A | 36" | 41"(1041mm) | 25"(635mm) | # **Instrument & Pipe Stands** **Heavy Duty Post Base** 20PU-5852 (2" Square), 20PU-5852 RD (2" Round) 20PU-5853 HD (15%" Sq.), 20PU-5854 HD (11/2" Sq.), 20PU-5853 (15%" Sq.) The Aickinstrut heavy duty post base is designed for applications that require a stronger base attachment than the standard Aickinstrut post base. Made from polyurethane, the heavy duty post base is available with four different openings: 1½", 15½", 2" square and 2" Schedule 80 round. The heavy duty post base is ideal for mounting fiberglass channel, handrails and instrument stands in corrosive environments. The standard color is gray, but special colors are available upon request. #### **Instrument & Pipe Stands** Aickin-Instrument and Pipe Stands are available in polyester or vinyl ester resin types and are designed to meet specific customer requirements. These stands are ideal for supporting instruments and enclosures in corrosive environments. Prefabrication of assemblies is available with customer drawings. Prefabrication saves contractors labor and material costs on the job site. #### **AICKINSHAPE® STRUCTURAL SHAPES** General purpose pultruded structural shapes can be used as a complement to Aickinstrut Channel Framing projects. The shapes are ideal for structural bracing, handrails, handrail kickplates, shims and supporting grating. Structural shapes are available in either polyester or vinyl ester resin and are provided in 20' lengths. Additional structural shapes not listed in this catalog are available. Contact the factory for pricing, availability and minimums. Special sizes and colors can be run based upon quantity. #### 0 1101 - ST Standard Isophthalic Polyester Resin; 0 = (Olive Green) - FR Isophthalic Polyester Fire Retardant Resin; P = (Dark Gray) **NOTES** - VE Vinyl Ester Fire Retardant Resin; V = (Beige) - Stock Item; ◆ Stocked in Yellow In part numbers shown below, replace "X" with resin and color code (0, P, V). I.E.: 18P-1200-20 Polyester Gray 2" x 1/4" Equal Leg Angle #### **Equal Leg Angle** #### **I-Beam** | Cine (In) | | Resir | 1 | ##: F4 | Dort No. | | |---------------------------------|----|-------|----|------------|-------------|--| | Size (In.) | ST | FR | VE | #/Lin. Ft. | Part No. | | | 1 x 1/8 | | | | 0.21 | 18X-1100-20 | | | 1 1/4 x 1/8 | _ | _ | _ | 0.23 | 18X-1110-20 | | | 1½ x ¾16 | | | | 0.37 | 18X-1120-20 | | | 1½ x ¼ | | | | 0.51 | 18X-1130-20 | | | 2 x ¹ / ₄ | | | | 0.68 | 18X-1200-20 | | | 3 x ¹ / ₄ | | | | 1.04 | 18X-1300-20 | | | 3 x 3/8 | | | | 1.65 | 18X-1310-20 | | | 3 x ½ | - | - | - | 2.15 | 18X-1320-20 | | | 4 x ½ | | | | 1.41 | 18X-1400-20 | | | 4 x 3/8 | | | | 2.23 | 18X-1410-20 | | | 4 x ½ | | | | 2.92 | 18X-1420-20 | | | 6 x 3/8 | | | | 3.44 | 18X-1500-20 | | | 6 x ½ | | | | 4.50 | 18X-1510-20 | | | Cino (In) | | Resin | | #/1:m E4 | Dovt No. | | |--|----|----------|---|------------|-------------|--| | Size (In.) | ST | ST FR VE | | #/Lin. Ft. | Part No. | | | 3 x 2 x 1½ x ¼ | _ | _ | _ | 1.18 | 18X-2100-20 | | | $3 \times 1\frac{1}{2} \times \frac{1}{4}$ | - | _ | _ | 1.11 | 18X-2300-20 | | | 4 x 2 x ¹ / ₄ | | | | 1.46 | 18X-2400-20 | | | 6 x 3 x ½ | | | | 2.24 | 18X-2600-20 | | | 6 x 3 x 3/8 | - | _ | _ | 3.29 | 18X-2800-20 | | | $8 \times 4 \times \frac{3}{8}$ | | | | 4.46 | 18X-2110-20 | | | 8 x 4 x ½ | _ | _ | - | 5.85 | 18X-2130-20 | | | 10 x 5 x 3/8 | - | _ | _ | 5.78 | 18X-2160-20 | | | 10 x 5 x ½ | - | | | 7.41 | 18X-2180-20 | | | 12 x 6 x ½ | - | _ | _ | 8.97 | 18X-2210-25 | | | 18 x 3/8 x 41/2 x 1/2 | _ | _ | _ | 8.48 | 18X-2230-20 | | | 24 x 3/8 x 71/2 x 3/4 | _ | _ | _ | 15.20 | 18X-2240-20 | | #### **Channel** #### **Wide Flange I-Beam** | Ciro (In) | | Resir | 1 | #/lin E4 | Dort No. | |---|----|-------|----|------------|--------------| | Size (In.) | ST | FR | VE | #/Lin. Ft. | Part No. | | 2 x ⁹ / ₁₆ x ¹ / ₈ | | | _ | 0.25 | 18X-2916-20 | | $3 \times \frac{7}{8} \times \frac{1}{4}$ | | | _ | 0.77 | 18X-3078-20 | | $3 \times 1 \times \frac{1}{4}$ | | | | 0.87 | 18X-3114-20 | | 3 x 1½ x ¼ | _ | | | 1.07 | 18X-3112-20 | | 3 x ½ x 1¾6 x 1/8 | _ | _ | _ | 0.65 | 18X-31316-20 | | 4 x 1 1/8 x 1/4 | | | | 1.11 | 18X-4118-20 | | 4 x 13/8 x 3/16 | | | | 0.86 | 18X-4138-20 | | 6 x 15/8 x 1/4 | | | | 1.64 | 18X-6158-20 | | 6 x 1 ¹¹ / ₁₆ x ³ / ₈ | | | | 2.52 | 18X-61116-20 | | 8 x 2 ³ / ₁₆ x ³ / ₈ | | | | 3.40 | 18X-82316-20 | | 10 v 23/ v 1/ | - | - | | 5 65 | 10V 10224 20 | Note: MOQ required, put all X in (X) | Ciro (In) | Resin | | | ##: FA | Dowl No. | |-----------------------------------|-------|----|----|------------|-------------| | Size (In.) | ST | FR | VE | #/Lin. Ft. | Part No. | | $3 \times 3 \times \frac{1}{4}$ | | | | 1.69 | 18X-2200-20 | | $4 \times 4 \times \frac{1}{4}$ | | | | 2.10 | 18X-2500-20 | | $6 \times 6 \times \frac{1}{4}$ | | | | 3.41 | 18X-2700-20 | | 6 x 6 x 3/8 | | | | 5.05 | 18X-2900-20 | | $8 \times 8 \times \frac{3}{8}$ | | | | 6.49 | 18X-2120-20 | | $8 \times 8 \times \frac{1}{2}$ | _ | | | 8.70 | 18X-2140-20 | | 10 x 10 x 3/8 | _ | - | - | 8.74 | 18X-2170-20 | | $10 \times 10 \times \frac{1}{2}$ | _ | | | 10.90 | 18X-2190-25 | | $12 \times 12 \times \frac{1}{2}$ | _ | | | 13.20 | 18X-2220-25 | # **Structural Shapes** ## Flat Sheet | Cine (In) | Resin | | | 4/1:m FA | Doub No. | | |---------------------------------------|-------|----|----|------------|----------|--| | Size (In.) | ST | FR | VE | #/Lin. Ft. | Part No. | | | 1/8 x 48 x 96 | | | | 1.14 | 18X-4100 | | | 3/16 x 48 x 96 | | | | 1.71 | 18X-4200 | | | ½ x 48 x 96 | | | | 2.34 | 18X-4300 | | | 3/8 x 48 x 96 | | | | 3.54 | 18X-4400 | | | ½ x 48 x 96 | | | | 4.68 | 18X-4500 | | | 5% x 48 x 96 | - | _ | - | 5.79 | 18X-4600 | | | ³ / ₄ x 48 x 96 | - | _ | _ | 6.94 | 18X-4700 | | | 1 x 48 x 96 | _ | _ | _ | 9.27 | 18X-4800 | | # **Square Bar** | Ciro (In) | | Resir | 1 | #/Lin. Ft. | Part No. | |-------------|----|-------|----|------------|-------------| | Size (In.) | ST | FR | VE | | | | 1 x 1 | | _ | _ | 0.87 | 18X-5100-20 | | 11/4 x 11/4 | _ | • | _ | 1.31 | 18X-5125-20 | | 1½ x 1½ | _ | • | _ | 1.98 | 18X-5150-20 | | 2 x 2 | _ | _ | _ | 3.12 | 18X-5200-20 | ## **Embedment Angle** | Ciro (In) | | Resir | 1 | #/Lin. Ft. | Part No. | |--|----|-------|----|------------|-----------------| | Size (In.) | ST | FR | VE | | | | 1 x 1½ x ¼ | _ | _ | | 1.00 | 18X-111214-20 | | 1½ x 1½ x ½ | _ | _ | | 1.10 | 18X-11211214-20 | | $2 \times 1\frac{1}{2} \times \frac{1}{4}$ | _ | _ | | 1.20 | 18X-211214-20 | #
Rectangular Tube | Size (In.) | Resin | | | #/Lin. Ft. | Part No. | | |--|-------|----|----|-------------|---------------|--| | 3126 (III.) | ST | FR | VE | #/LIII. Ft. | rait NV. | | | 4 x 1 x 1/8 | _ | _ | _ | 0.85 | 18X-4118-20 | | | $4 \times \frac{1}{8} \times 2 \times \frac{1}{4}$ | | | | 1.52 | 18X-418214-20 | | | 43% x 13% x 1/8 x 3/16 | _ | - | _ | 1.18 | 18X-438138-20 | | | 4½ x 1¾ x 1/8 x 3/16 | _ | _ | _ | 1.29 | 18X-412138-20 | | | 5 x 2 x 1/8 | _ | _ | _ | 1.32 | 18X-5218-20 | | | 5½ x 2½ x ¾16 | _ | _ | _ | 1.32 | 18X-518218-20 | | | 6½ x ¼ x 2 x ½ | _ | _ | _ | 3.77 | 18X-612212-20 | | | $6 \times 4 \times \frac{1}{4}$ | _ | | _ | | 18X-6414-20 | | # **Square Tube** | Size (In.) | | Resin | | #/Lin. Ft. | Part No. | |-------------------------|----|-------|----|--------------|-------------| | OIZC (III.) | ST | FR | VE | π/LIII. I C. | i ait iio. | | 1 x 1/8 | | | | 0.32 | 18X-3100-20 | | 11/8 x 1/8 | _ | - | _ | 0.37 | 18X-3200-20 | | 1 ½ x ½ | _ | _ | _ | 0.41 | 18X-3300-20 | | 1 ½ x ½ | _ | - | _ | 0.68 | 18X-3310-20 | | 1½ x 1/8 | | • | • | 0.54 | 18X-3400-20 | | 1½ x ¼ | _ | - | | 0.98 | 18X-3410-20 | | 13/4 x 1/8 | _ | • | • | 0.63 | 18X-3500-20 | | 13/4 x 1/4 | _ | • | • | 1.10 | 18X-3510-20 | | 2 x 1/8 | | • | • | 0.69 | 18X-3600-20 | | 2 x 1/4 | | • | • | 1.40 | 18X-3610-20 | | 21/4 x 1/8 | _ | • | _ | 0.83 | 18X-3800-20 | | $2^{1/4} \times ^{1/4}$ | _ | _ | _ | 1.56 | 18X-3810-20 | | 21/2 x 1/4 | _ | • | _ | 1.79 | 18X-3900-20 | | 3 x 1/8 | _ | - | _ | 1.12 | 18X-3110-20 | | 3 x 1/4 | | | | 2.15 | 18X-3111-20 | | 4 x 1/4 | | | | 2.93 | 18X-3120-20 | | 4 x 3/8 | | _ | _ | 4.24 | 18X-3121-20 | | 6 x 3/8 | | | | 6.42 | 18X-3140-20 | # **Round Rod** | Ciro (In) | | Resir | 1 | #/1:n F4 | Down No. | |-------------------------------|----|-------|----|------------|----------------| | Size (In.) | ST | FR | VE | #/Lin. Ft. | Part No. | | 1/8 | | - | _ | 0.01 | 18X-70018-20 | | ³ ⁄ ₁₆ | | _ | _ | 0.02 | 18X-700316-20 | | 1/4 | | _ | _ | 0.04 | 18X-70014-20 | | 5/16 | | _ | _ | 0.07 | 18X-700516-20 | | 0.35 | _ | - | _ | 0.08 | 18X-70035-20 | | 3/8 | | _ | | 0.09 | 18X-70038-20 | | 1/2 | | - | | 0.17 | 18X-70012-20 | | 5/8 | | - | | 0.27 | 18X-70058-20 | | 3/4 | | - | | 0.39 | 18X-70034-20 | | ¹³ / ₁₆ | _ | - | _ | 0.46 | 18X-7001316-20 | | 1 | | - | | 0.66 | 18X-70100-20 | | 11/4 | | - | _ | 1.08 | 18X-70114-20 | | 1½ | | - | _ | 1.56 | 18X-70112-20 | | 2 | _ | _ | _ | 2.56 | 18X-70200-20 | | 2 ½ | _ | | _ | 4.10 | 18X-70212-20 | | 3 | _ | _ | _ | 5.70 | 18X-70300-20 | # **Round Tube** | Size (In.) | Resin | | | #/Lin. Ft. | Part No. | |---|-------|----|----|-----------------------|----------------| | | ST | FR | VE | π/ L III. I C. | i ait No. | | 1 x .100 | _ | _ | _ | 0.22 | 18X-7100-20 | | 1 x ½ | | | _ | 0.25 | 18X-7118-20 | | 11/4 x 3/32 | - | _ | - | 0.27 | 18X-7114332-20 | | 11/4 x 1/8 | _ | _ | _ | 0.32 | 18X-711418-20 | | 11/4 x 1/4 | _ | _ | - | 0.60 | 18X-711414-20 | | 1½ x 1/8 | | | _ | 0.45 | 18X-711218-20 | | 1½ x ¼ | _ | | _ | 0.79 | 18X-711214-20 | | 13/4 x 1/8 | _ | _ | _ | 0.47 | 18X-713418-20 | | 1 ³ / ₄ x ¹ / ₄ | _ | _ | _ | 0.94 | 18X-713414-20 | | 2 x ¹ / ₄ | | | | 1.12 | 18X-7214-20 | | 3 x.100 | _ | _ | _ | 0.89 | 18X-7300-20 | | 3 x ¹ / ₄ | _ | _ | _ | 1.68 | 18X-7314-20 | | 3 x ½ | | _ | _ | 2.98 | 18X-7312-20 | | 4.89 x 1/8 | _ | _ | _ | 2.32 | 18X-7418-20 | | 4.89 x ³ / ₁₆ | | _ | | 2.97 | 18X-74316-20 | # **NOTES** AICKINSTRUT # **Part Number Index** | AICKINSTRUT ° | | |------------------------------|-----------------| | Channel Framing 10-19 | | | 20E-1000 | 11 2 | | 20E-1200 | 11 2 | | 20E-2000 | 11 2 | | 20E-2200 | 11 2 | | 20E-2300 | 2 | | 20P-1000 | 2 | | | ') | | 20P-1100 | | | 20P-1200 | ر ۱۱ | | 20P-1300 | ر ۱۱ | | 20P-1500 | ر ۱۱ | | 20P-1600 | 11 2 | | 20P-1700 | 11 | | 20P-1800 | 11 2 | | 20P-2000 | 11 ² | | 20P-2000-SST | 11 2 | | 20P-2100 | | | 20P-2100-SST | | | 20P-2200 | | | 20P-2200-SST | | | | | | 20P-2300 | | | 20P-2300-SST | ر ۱۱ | | 20V-1000 | ر ۱۱ | | 20V-1100 | ۱۱ م | | 20V-1200 | 11 - | | 20V-1300 | 11 2 | | 20V-1500 | 11 2 | | 20V-1600 | 11 | | 20V-1700 | 11 2 | | 20V-1800 | 11 2 | | 20V-2000 | 11 2 | | 20V-2000-SST | 11 2 | | 20V-2100 | 11 ² | | 20V-2100-SST | 11 ² | | 20V-2200 | | | 20V-2200-SST | | | 20V-2300 | 2 | | 20V-2300-SST | | | | 2 | | Fittings & Accessories 16-19 | 2 | | 20E-5000 | | | 20P-2500 | | | 20P-2502 | | | 20P-2504 | | | | 10 | | 20P-2506 | 10 | | | 10 | | 20P-2510 | ۱′ ۵ | | 20P-2512 | ۱′ ۵ | | 20P-2514 | ١/ ۵ | | 20P-2516 | _ | | 20P-2518 | | | 20P-2520 | 17 2 | | 20P-2522 | 17 2 | | 20P-2524 | 17 2 | | 20P-2526 | 17 2 | | 20P-2528 | 18 2 | | 20P-2530 | _ | | 20P-2534 | 0 | | 20P-2540 | | | 20P-2542 | | | | | | 20P-2541 | 18 J | | 20P-282217 | |---| | 20P-2824 | | | | 20P-2826 17 | | 20P-282818 | | 20P-2830 18 | | 20P-2834 | | | | 20P-2840 18 | | 20PP-5853 19 | | 20PP-585419 | | 20PP-585519 | | 20PP-5903 | | | | 20PP-590419 | | 20PP-5905 19 | | 20PU-585319 | | 20PU-5854 | | | | 20PU-585519 | | 20PU-590319 | | 20PU-590419 | | 20PU-590519 | | 20V-2500 | | | | 20V-2502 16 | | 20V-2504 16 | | 20V-2506 | | 20V-2508 | | | | 20V-2510 | | 20V-2512 17 | | 20V-2514 17 | | 20V-2516 17 | | 20V-2518 | | | | 20V-2520 17 | | 20V-2522 17 | | 20V-2524 17 | | 20V-2526 17 | | | | 20V-2528 | | 20V-2530 18 | | 20V-2534 18 | | 20V-2540 18 | | 20V-2541 | | | | 20V-2800 16 | | 20V-2802 16 | | 20V-2804 16 | | 20V-2806 16 | | 20V-2808 | | | | 20V-2810L/R17 | | 20V-2812 17 | | 20V-2814 17 | | 2UV-2014 17 | | | | 20V-2816L/R17 | | 20V-2816L/R | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2541 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2541 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 50PU-2090 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2844 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 50PU-2538 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2830 18 20V-2834 18 20V-2840 18 20V-2541 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2090 19 50PU-2538 19 50PU-2538 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2844 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 50PU-2538 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2826 17 20V-2828 18 20V-2830 18 20V-2844 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2090 19 50PU-2538 19 50PU-2538 18 50PU-2611 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2090 19 50PU-2538 19 50PU-2538 18 50PU-2611 18 50PU-2611-SP 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2990 19 50PU-2538 18 50PU-2538 18 50PU-2611 18 50PU-2611-SP 18 50PU-2613 18 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 50PU-2538 19 50PU-2538 19 50PU-2538 18 50PU-2611 18 50PU-2611 18 50PU-2611 18 50PU-2613 18 50PU-2616 16 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-2008 19 50PU-2045 19 50PU-2538 19 50PU-2538 19 50PU-2611 18 50PU-2611-SP
18 50PU-2613 18 50PU-2616 16 50PU-2636 19 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-1508 19 50PU-2008 19 50PU-2045 19 50PU-2538 19 50PU-2538 19 50PU-2538 18 50PU-2611 18 50PU-2611 18 50PU-2611 18 50PU-2613 18 50PU-2616 16 | | 20V-2816L/R 17 20V-2818 17 20V-2820 17 20V-2822 17 20V-2824 17 20V-2828 18 20V-2830 18 20V-2834 18 20V-2840 18 20V-2542 18 20V-2541 18 50PU-2008 19 50PU-2045 19 50PU-2538 19 50PU-2538 19 50PU-2611 18 50PU-2611-SP 18 50PU-2613 18 50PU-2616 16 50PU-2636 19 | | =- | 20 | |--|--| | AIC-EC | 23 | | PCR-050 thru PCR-800 | 21 | | PS050 thru PS1800 | | | UB-050 thru UB-600 | 23 | | Fasteners 23-2
10PU-CN | = | | rastellers 25-2 | J | | 10PU-CN | 25 | | 10PU-CNMHD | | | 10PU-CNS | | | 12PU-CN | | | 12PU-CNMHD | | | 18PU-CNMHD | 25 | | 200-4226 thru 200-4343 | 25 | | 20PU-CNMHD | | | 250E-999 | 24 | | 250PU Series Bolts | 23 | | 250PU-000 | 24 | | 250PU-CN | 25 | | 312PU-CN | | | 375E-999 | | | 375PU Series Bolts | | | 375PU-000 | | | 375PU-CN | | | 375PU-CNHD | | | 375PU-FN-000 | | | 375V Series Bolts | 23 | | 375V-000 | | | 500E-999 | | | 500PU Series Bolts | | | 500PU-000 | | | 500PU-CN | | | | | | 500PU-CNHD500PU-FN-000 | | | | | | 500V-000 | | | 625E-999 | | | | | | 625PU Series Bolts | 23 | | 625PU Series Bolts | 23
24 | | 625PU Series Bolts | 23
24
25 | | 625PU Series Bolts
625PU-000 | 23
24
25
24 | | 625PU Series Bolts
625PU-000
625PU-CNHD
625PU-FN-000
625V-000 | 23
24
25
24
24 | | 625PU Series Bolts
625PU-000
625PU-CNHD
625PU-FN-000
625V-000
750E-999 | 23
24
25
24
24
24 | | 625PU Series Bolts
625PU-000
625PU-CNHD
625PU-FN-000
625V-000
750E-999
750PU-000 | 23
24
25
24
24
24
24 | | 625PU Series Bolts
625PU-000
625PU-CNHD
625PU-FN-000
625V-000
750E-999
750PU-000 | 23
24
25
24
24
24
24
25 | | 625PU Series Bolts
625PU-000
625PU-CNHD
625PU-FN-000
625V-000
750E-999
750PU-000
750PU-CNHD | 23
24
25
24
24
24
25
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 750V-000 | 23
24
25
24
24
24
25
24
25
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-CNHD 750PU-CNHD 750PU-FN-000 750V-000 1000E-999 | 23
24
25
24
24
24
25
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-CNHD 750PU-FN-000 750V-000 1000E-999 | 23
24
25
24
24
24
25
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 1000V-000 WR375 thru WR750 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-CNHD 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-RN-000 625PU-FN-000 625PU-FN-000 750E-999 750PU-CNHD 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-CNHD 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-000 1000PU-FN-000 1000PU-FN-000 1000V-000 WR3755 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24
26
26 | | 625PU Series Bolts 625PU-000 625PU-RN-000 625PU-FN-000 625PU-FN-000 750E-999 750PU-CNHD 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-000 1000PU-FN-000 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24
26
26 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 | 23
24
25
24
24
24
25
24
24
24
24
24
24
24
26
26
26 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27- | 23
24
25
24
24
24
25
24
24
24
24
24
24
24
24
24
24
24
24
24 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625PU-FN-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27-200-3827 thru 200-3831 | 23
24
25
24
24
24
25
24
24
24
24
24
24
26
26
28 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27- 200-3827 thru 200-3831 200-3840 thru 200-3843 | 23
24
25
24
24
24
24
24
24
24
24
26
26
28
28 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27- 200-3827 thru 200-3831 200-3840 thru 200-3843 | 23
24
25
24
24
24
24
24
24
24
24
24
26
26
28
28
27 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27-200-3827 thru 200-3841 200-3840 thru 200-3843 20V-2BC-25 20V-2BC-37 | 23
24
25
24
24
24
24
24
24
24
24
24
26
26
28
28
27
27 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 1000V-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27- 200-3827 thru 200-3831 200-3840 thru 200-3843 20V-2BC-25 20V-2BC-37 20V-2BC-50 | 23
24
25
24
24
24
24
24
24
24
24
24
26
26
26
27
27
27 | | 625PU Series Bolts 625PU-000 625PU-CNHD 625PU-FN-000 625V-000 750E-999 750PU-000 750PU-CNHD 750PU-FN-000 1000E-999 1000PU-FN-000 1000PU-FN-000 WR375 thru WR750 WR375SQ thru WR750SQ Pipe Hangers 2 CVHPU-100 thru CVHPU-600 100-1500 thru 100-1514 Pipe Hanging Accessories 27-200-3827 thru 200-3841 200-3840 thru 200-3843 20V-2BC-25 20V-2BC-37 | 23
24
25
24
24
24
24
24
24
24
24
24
26
26
28
27
27
27
27 | RGBC-327 Pipe Supports 28-30 20N-ARM08......30 50PU-500SP......23 | 20N-ARM14 30 20N-ARM17 30 20N-ARM23 30 20N-STA21 30 20N-STA33 30 NIC-CH-P (Polyester) 28 NIC-CH-V (Vinyl Ester) 28 Vall Brackets 29 | | |--|--| | Instrument & Pipe Stands 30 | | | 10PU-5852 30 10PU-5852 RD 30 10PU-5853 HD 30 10PU-5854 HD 30 | | | Structural Shapes 31-33 | | | Channel 31 Imbedment Angle 32 Equal Leg Angle 31 Elat Sheet 32 Idandrail Components 33 Beam 31 Rectangular Tube 32 Round Rod 33 Round Tube 33 Square Bar 32 Equare Tube 32 | | | Vide Flange I-Beam | | 20P-2800 16 20P-2802 16 20P-2804 16 20P-2806 16 20P-2812......17 20P-2814......17 20P-2820 17 16100 South Lathrop Avenue Harvey, IL 60426 **PHONE** / 800-882-5543 FAX / 708-339-7814 www.copecabletray.com